
Achievable feedback performance

Many of the properties of the MIMO feedback loop of Fig. 1 are characterized by its
sensitivity matrix
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and complementary sensitivity matrix
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These properties include the sensitivity of the feedback loop to disturbances and
measurement noise, its response to reference inputs, and its stability and
performance robustness (Kwakernaak, 1995).

H$  optimization is a powerful tool for shaping the sensitivity functions so that all the
design requirements are satisfied. In particular the mixed sensitivity problem is a
useful design paradigm. The Polynomial Toolbox contains the routine mixeds for
solving SISO mixed sensitivity problems.

Fig. 1. LTI feedback system

Especially for complex design problems it is highly recommended to devote some time
to exploratory analysis before attempting the actual design. This exploratory analysis
serves to reveal the inherent possibilities and limitations of the control system. Part
of this exploratory analysis always is the computation of the poles and zeros of the
plant. Any right-half plane zeros and poles that are present impose essential
constraints on the closed-loop bandwidth that may be achieved or is necessary (again
see Kwakernaak, 1995, for a review).

For MIMO systems the open-loop pole and zero locations do not fully reveal the
design limitations. For instance, in the SISO case the presence of a nearly cancelling
pole-zero pair in the right-half plane predicts poor performance, with high peaks in
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the sensitivity functions. The closer the pole and zero are, the higher the peak. In the
case of MIMO systems the pole of such a pair may occur in a different “channel” than
the zero so that the pole and zero do not interact and their adverse effects are not
amplified such as in the SISO case.

To reveal the a priori design limitations more fully it may be useful to compute the
minimal peak values of the $ -norms of the sensitivity functions S and T. This is the
purpose of this demo. Polynomial techniques lend themselves very well for the
computation of these bounds and explicitly reveal their relation to the open-loop zero
and pole locations. The peak values themselves are lower bounds for the peak values
that are obtained for more realistic designs matched to the design specifications.

For the SISO case the minimal peak values are derived in Kwakernaak (1985). We
assume that the plant has the transfer function
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The polynomial N is the plant numerator polynomial and the polynomial D is the
plant denominator polynomial. D"  and N"  are polynomials whose roots have strictly
positive part and hence lie in the open right-half complex plane. The roots of the
polynomials D#  and N#  all have nonpositive real part.

The minimal peak value of the $ -norm of the sensitivity function S in the SISO case
equals the minimal peak value of the magnitude of the sensitivity function | ( )|S j% ,
% & R . This minimal norm may be found by solving a special H$  optimization
problem, namely that of minimizing S $ .  The solution of this minimum sensitivity
problem follows by solving the polynomial equation
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for the scalar '  and the polynomials X"  and Y" . If D"  has degree d and N"  has
degree n then X"  has degree n # 1 and Y"  has degree d # 1. As we shall see this
equation is equivalent to a generalized eigenvalue problem. The compensator that
solves the minimum sensitivity problem has the transfer function
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If the plant is strictly proper then Copt  is nonproper. The optimal sensitivity function
is given by
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Sopt  has the so-called equalizing property, that is, | ( )|S jopt %  is constant for all real %
and equals | |' . The minimal peak value hence is | |' .

The properties of the minimum peak value may be summarized as follows:

•  If the plant has no right-half plane zeros then Sopt $
! 0, which is achieved by

an infinite-gain compensator.

•  If the plant has no right-half plane poles but at least one right-half plane zero
then Sopt $

! 1, which is obtained by taking C s( ) ! 0.

•  If the plant has at least one right-half plane zero and at least one right-half plane
pole then Sopt $

) 1.

•  If the plant has a coinciding right-half plane pole-zero pair then Sopt $
! $ .

For the minimal peak value of the complementary sensitivity function T similar
results hold. The critical equation that needs to be solved now is
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and the optimal complementary function is
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This is the summary of the results for the minimization of T $ :

•  If the plant has no right-half plane poles then Topt $
! 0, which is achieved by an

infinite-gain compensator.

•  If the plant has no right-half plane zeros but at least one right-half plane pole
then Topt $

! 1, which is obtained by taking C s( ) ! 0.

•  If the plant has at least one right-half plane zero and at least one right-half plane
pole then T Sopt opt$ $

! ) 1.



•  If the plant has a coinciding right-half plane pole-zero pair then Topt $
! $ .

Note that minimal sensitivity and minimal complementary sensitivity are not
simultaneously achieved by the same compensator.

The only situation where some serious computation needs to be done once the open-
loop poles and zeros are available arises when the plant has both right half plane
zeros and poles. We then need to solve the polynomial equation
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The solution of this problem provides the minimal peak value of both the sensitivity
and the complementary sensitivity function. If D"  has degree d and N"  has degree n
then X"  has degree n # 1 and Y"  has degree d # 1.  Write X"  and Y"  in terms of their
coefficients as
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and introduce the column vectors
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Then it may be verified that the polynomial equation (1) we need to solve is
equivalent to the matrix equation
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S Am ( ) denotes the (column) Sylvester resultant matrix of order m of the polynomial
A, and Jn  is the matrix
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To show that (2) amounts to a generalized eigenvalue problem we rearrange it in the
form
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This is equivalent to the equation
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where
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We need the solution of (3) that corresponds to the real eigenvalue *  with the
smallest size. The minimal peak sensitivity equals the inverse of the magnitude of
the smallest eigenvalue.

We develop a new Polynomial Toolbox function minsens that computes the minimal
peak value of the sensitivity functions. Its input arguments are the numerator
polynomial N and the denominator polynomial D of the SISO plant.

As we develop the macro we test it for the plant with transfer function
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We input the data accordingly as

N = s^2+2*s-3;

D = s^2-4/9;   

The first few lines of the m-file are

% minsens

% The function

%    p = minsens(N,D)

% computes the minimum peak value of the sensitivity and

% complementary sensitivity functions for the SISO plant

% with transfer function P = N/D that may be achieved by

% feedback

The macro
minsens



function p = minsens(N,D)

This provides the help text, and declares the function, its input arguments and its
output arguments.

Normally a sequence of tests needs to follow this preamble to check whether N and D
are really scalar polynomials but we dispense with this for the purpose of this demo.

Given the numerator and denominator polynomials we now compute their roots and
use these to define the polynomials N"  and D" :

% Compute the polynomials Nplus and Dplus whose roots are

% the roots of N and D, respectively, with positive real parts

rootsN = roots(N); rootsNplus = rootsN(find(real(rootsN)>0));

Nplus = mat2pol(poly(rootsNplus));

rootsD = roots(D); rootsDplus = rootsD(find(real(rootsD)>0));

Dplus = mat2pol(poly(rootsDplus));

keyboard

The MATLAB command poly is used to construct the polynomials Nplus and Dplus
from their roots after which they are converted to Polynomial Toolbox format with
the Toolbox command mat2pol. While developing the macro we end it with the
keyboard command so that the results at that point may be inspected. In the
present case typing the command

minsens(N,D)

results in the output

K»

Editing this to

K» Nplus, Dplus

and ending the line with a return results in the output

Nplus =



    -1 + s

Dplus =

    -0.67 + s

We now include two tests to see whether the peak value is either 0 or 1.

% Check whether p = 0 or p = 1

if isempty(Nplus)

   p = 0; return

elseif isempty(Dplus)

   p = 1; return

end

For the example that we are pursuing both tests fail so we are in the situation where
the generalized eigenvalue problem needs to be solved. We first set it up.

% Solve the generalized eigenvalue problem

A = [ sylv(Dplus,'col',n-1) sylv(Nplus,'col',d-1) ];

J = 1;

for i = 2:n

   J(i,i) = -1*J(i-1,i-1);

end

B = [ sylv(Dplus','col',n-1)*J zeros(n+d,d) ];

Only one more line is needed to complete the macro:

p = 1/min(abs(eig(A,B)));

Calling

minsens(N,D)   

results for the example at hand in



ans =

    5.0000   

We test a few more examples

•  No right-half plane zeros:

minsens(s+1,s-1)   

ans =

     0

•  One right-half plane zero but no right-half plane poles:

minsens(s-1,s+1)   

ans =

     1

•  Coinciding right-half plane pole-zero pair:

minsens(s-1,s-1)   

Warning: Divide by zero.

ans =

   Inf

For the MIMO case no simple results to compute the minimal peak sensitivity such
as for the SISO case are available. The only option seems to be to compute a full
solution of the minimum sensitivity problem. The Polynomial Toolbox provides the
routine dssrch for this purpose. It solves the standard H$  optimization problem, is
numerically well-conditioned, fast, computes optimal solutions accurately and
reliably, and can handle nonproper generalized plants as well as problems where the
optimal compensator is nonproper. The routine requires the generalized plant of the
standard problem to be in descriptor form. The Toolbox supplies the necessary
conversion routines from polynomial matrix fraction form to descriptor form and vice-
versa.
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Fig. 2. Minimum sensitivity problem

To bring the minimum sensitivity problem into standard form we consider the block
diagram of Fig. 2. When the loop is opened the signals are related as
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This defines the generalized plant of the standard problem as
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If the plant P has the left coprime representation P D N! #1  then the generalized
plant has the left coprime representation
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After converting this left coprime fraction to descriptor form the routine dssrch may
be called to solve the H$  optimization problem.

We generate a random 2 2+  plant P D N! #1  by the commands

D = prand([1;2],2,2,'int')   

D =

    -8 + s      1 - 6s

     6 + 6s     2 + s - s^2

N = prand([1;2],2,2,'int')

N =
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    -3 + 11s    -1 + s

     5          -4 + s - 7s^2   

The zeros and poles of the plant are

Zeros = roots(N)   

Zeros =

   0.0379 + 0.8051i

   0.0379 - 0.8051i

   0.3399    

Poles = roots(D)   

Poles =

   45.5167

   -1.0000

    0.4833

Inspection shows that the plant has both right-half plane poles and zeros so by
analogy to the SISO problem we expect a minimum peak sensitivity of at least 1.

We first convert the generalized plant into descriptor form:

Dg = [D zeros(2,2); eye(2,2) eye(2,2)];

Ng = [D N; zeros(2,2) zeros(2,2)];   

[A,B,C,D,E] = lmf2dss(Ng,Dg)   

A =

     8   -47     0

    -6    37     1

    -6    38     0

B =



         0         0   85.0000  336.0000

         0         0  -66.0000 -264.0000

         0         0  -61.0000 -276.0000

C =

     1    -6     0

     0    -1     0

    -1     6     0

     0     1     0

D =

    1.0000         0   11.0000   43.0000

         0    1.0000         0    7.0000

   -1.0000         0  -11.0000  -43.0000

         0   -1.0000         0   -7.0000

E =

     1     0     0

     0     1     0

     0     0     1

The solution of the H$  problem is initiated by typing

 [Ak,Bk,Ck,Dk,Ek,gopt,clpoles] = dssrch(A,B,C,D,E,2,2,0.5,5)   

The resulting output is

Ak =

    0.5209    1.0787

   -0.9706   -0.1370

Bk =



   -0.9241   -9.2055

    1.7746   -0.6237

Ck =

    0.0410   -0.0035

   -0.1003    0.0981

Dk =

   -0.3750    0.0976

    0.0547   -0.0142

Ek =

     1     0

     0     1

gopt =

    1.1595

clpoles =

 -45.5167 + 0.0000i

  -0.1755 - 0.9418i

  -0.1755 + 0.9418i

  -0.4833 - 0.0000i

  -1.0000    

We observe that the minimal norm is 1.1595. The fact that this number is not all that
much greater than 1 indicates that a design without exaggerated peaking of the
sensitivity functions is possible as long as the design specifications — in particular
the desired bandwidth — are compatible with the limitations imposed by the right-
half plane zeros and poles of the plant.


