Computing the covariance function of an ARMA process

Introduction

Algorithm

The problem of computing the covariance function for a given multivariable ARMA process
1s often encountered in estimation, filtering, stochastic control and communications.

Consider the ARMA process
A(2)y(t) = B(z)e(t), te Z

where z 1s the shift operator defined by zy(t) = y(t + 1). A and B are square polynomial
matrices in z with possibly complex-valued coefficients. The random sequence e is white
noise so that

0 fort#s

H oy _
Ee(t)e (t)_{l fort=s

The superscript H indicates the complex conjugate transpose. A is assumed to be monic
(that is, its leading coefficient matrix is nonsingular) with all its roots strictly inside the
unit circle. Under these assumptions the ARMA process y is well-defined and
asymptotically stationary.

The covariance matrix function that is to be found is defined by
r(7) = lim Ey(t +)y ()
t—oo

The covariance matrix function may be computed by inverse z-transformation of the
spectral density matrix

D(z)= A" RCRICT AT/ z))H

The computation of the covariance function (Séderstrom, Jezek and Kucera, 1997) follows
by partial fraction expansion of the spectral density in the form

()= A" @)X+ X/ 2(Aaa) z))H

This partial fraction expansion is equivalent to solving the symmetric two-sided polynomial
matrix equation

CeCH1/2=XA 12+ ARXP 112

Example 1: A
scalar process

for the polynomial matrix X. Once X is available we may expand

A (X () = 2 M)z T

7=0
by long polynomial division. Inspection of the right-hand side shows that

7(7) for >0
r(0) =170+ 77 () forr=0
P forz<0

To illustrate the procedure first consider a scalar ARMA process y given by

A(2) = 1-2.42+1.432>
Cl»=1

We develop a Polynomial Toolbox function called covf , which takes the polynomial
matrices A and C as input arguments and has the desired covariance function r as output.
Because a macro with the same name exists in the System Identification Toolbox we need
to overload this function. Practically this means that the macro is placed in the pol
subdirectory of the main Polynomial Toolbox directory. When MATLAB detects that covf is
called with one or more polynomial objects as input argument then it uses the version of
covf that is located in this subdirectory.

The macro covf The first lines of the macro are

% covf

%

% This function conputes the covariance function
% of the discrete-time ARMA process y defined by
%

%A(z)y(t) = C(z)e(t)

%

% wi th e standard white noi se.

function r = covf (A Cn)

The third input argument n is the number of time shifts over which the covariance function
is required.

Normally at this point each Polynomial Toolbox function performs a number of correctness
checks on the input arguments. We dispense with these for the purpose of this demo.

To solve the symmetric polynomial equation
X@A%1 29+ ARX 119 =C@EC 112
we use the Toolbox function xaaxb. Only one line is needed:
% Sol ve the two-sided pol ynom al matrix equation
X = xaaxb(A CC);
For the example at hand the intermediate solution at this point is
X =
-20 + 8.3z + 28z"2

From the given polynomial A and the computed polynomial X the desired covariance
function is recovered by "long division" of X ~1A. For this purpose the macro | ongl di v is
available. Given the square polynomial matrix D and the polynomial matrix N this function
finds the first n + d + 1 terms of the Laurent series expansion

DY)N@=Q,2" + Q12" 1+ +@z+ Ry + Riz '+ Ryz 2+ + Ryz 1 + -

If the fraction D™'N is proper then the macro returns the first d + 1 terms (with d an input
parameter) of the expansion

DY 2N@) =Ry+ Rz '+ Ryz 2+ + Rgz L+

This is exactly what we need. Thus, the appropriate command is
% Apply long division to X\A
[QR = longldiv(X A n);

R is returned as a polynomial matrix in the variable z b of degree n. For convenience we
also return the desired covariance function as a polynomial in this variable:

% Construct the covariance function
r = R
r{0} = r{0}+r{0}";
The macro is now complete and we may apply it to the example:
r = covf(1-2.4*z+1.43*z"2, 1, 40);
The resulting covariance function r may be plotted using standard MATLAB commands:
plot(0:40,r{:},'0")
title(' Covariance function - Exanple 1')
x|l abel ("tau'), ylabel ('r'), grid on
shows the plot of the covariance function.

i Figaam Mo | []
Fle il Wb Help
Comad grdd faacison - Essanpda |
a
= i | ;
- x| S S

ol S ;

k- ;

- i

i H 2 H H H H

]] 1 18 - 0 kS £
liw

Fig. 1. Covariance function of the ARMA process of Example 1

Example 2:
Two-variable
ARMA process

As another example consider the computation of the covariance matrix function of the two-
variable ARMA process y defined by

C(z):{l O}

01

A(z)={1_22 0 }

6 1-25z(

As our newly created function is ready for multivariable processes we may use it as it is
after defining the data:

A=1]1-2*z 0; 6 1-2.5*z]; C = eye(2,2);
r = covf (A C, 10);

The output r now is a 2 x 2 polynomial matrix of degree 10. The coefficients r{i}, 1 =1, 2, ---,
10, constitute the desired covariance function. They may be plotted in a single frame by the
following sequence of standard MATLAB commands that we include at the end of the macro
covf:

% Pl ot the covariance function
figure; clf
k = length(C);
for i = 1:k
for j = 1:k
subpl ot (k, k, (i-1)*k+)
plot(0:n,r{:}(i,j),'0")
grid on; xlabel ('tau')
end
end

The resulting plot is shown in The subplot in position (i, j) shows the scalar
covariance function r;;(7) = lim cov[y; (¢ + 7),y; (¥)].
T—eo0

= A
]

1
me e memse e e

.-..@..-..-.i.-..--....

R FE—

Fig. 2. Covariance function of the ARMA process of Example 2

