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Abstract

A brief introduction to the residual generation problem for fault diagnosis in linear systems is given and a solution
based on polynomial methods are outlined. Also, a design example, complete wittn& code illustrates how

the Polynomial Toolbox can be used in the design of residual generators. For more detailed information on the
design method, see e.g:r{sk & Nyberg1999h Nyberg & Frisk1999.
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1 Introduction

A model basedliagnosis system commonly consists ofeaidual generatorfollowed by thresholds and some
decision logic. The residual generator filters the known signals and generates a sigreaidiha that should be

small (ideally 0) in the fault-free case and large when a fault is acting on the system. In Eiguieillustrated

how the residual generator is connected to the real system. The figure also shows that not only the contol signal
influences the system, but also disturbantasd the faultsf that we wish to detect. Both disturbances and faults
are here modeled as inpsignalsto the system. In ordanot to make the residual sensitive to the disturbances

d, the disturbances must leecoupled By using several residuals, or a vector-valued residual, where not only
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Figure 1: A residual generator.

disturbances but also different subset of faults are decoupled, it is possible to achieve isolation. Isolation means
distinguishing between different faults and locate the fault component. This is the basic idea of a diagnosis system
using the principle oktructured residualgGertler 1998 or the more general principle atructured hypothesis
tests(Nyberg1999. The set of faults that, along with the disturbances, are decoupled in a residual are called
non-monitoredaults.

2 Theory

This demonstration showmear residual generation fdinear systems with no model uncertainties. A general
linear residual generator can be written

r=qe (1) )

i.e. Q(s) is a multi-dimensional transfer-matrix with known signal¢) andw(¢) as inputs and a scalagsidual
as output. The requirement on the residual generator(j(®), is that it is sensitive to monitored faults and not
sensitive to disturbances (including non-monitored faults).

This section introduces linear residual generation problem and also briefly describes the minimal polynomial
basis solution. All derivations are performed in the continuous case but the corresponding results for the time-
discrete case can be obtained by substitutibyg » andimproperby non-causal

2.1 Linear Residual Generation
The systems studied in this work are assumed to be on the form
y=Gu(s)u+ Ga(s)d+ Gy(s)f )

wherey(t) is measurements,(¢) is known inputs to the systemdt) is unknown disturbances including non-
monitored faults, and (¢) is the monitored faults. The filtep(s) in (1) is a residual generator if and only if the
transfer function from: andd to r is zero, i.elim;_,., r(t) = 0 for all d(¢) andu(t) when f(¢) = 0. To be able to
detect faults, it is also required thatt) # 0 when f(¢) # 0.



Inserting @) into (1) gives
r=a) |9 O 1] s a4 5

To maker(t) = 0 whenf(t) = 0, it is required that disturbances and the control signatlaseupledi.e. forQ(s)
to be a residual generator, it must hold that

Q) | 9] o ©
Also, it is required that
aw) | Y] 2o @

with suitable properties, e.g. adequate DC-gain from faults. Thus, the linear residual generation problem is to find
a suitableQ)(s) that fulfills (3) and @).

2.2 A Solution based on Minimal Polynomial Bases

Equation 8) implies thatQ(s) must belong to the left null-space of

s =[G G| ©

This null-space is denote, (M (s)). The matrixQ(s) thus need to fulfill two requirements: belong to the left
null-space of\/ (s) andgive good fault sensitivity properties in the residual. If, in a first step of the desiigf{ s)
that fulfills the first requirement is found, therti s) with good fault sensitivity properties can be selected. Thus,
in a first step of the design of the residual gener6s) we need not considef or G;(s). The problem is then to
find all rational@(s) € N (M (s)). Of special interest are the residual generators with least McMillan degree, i.e.
the number of states in a minimal realization.

Finding allQ(s) € N1 (M (s)) can be done by finding a minimal basis for the rational vector-spadé/ (s)).
A minimal basis for a rational vector-space ip@ynomialbasis Forney1975. For now, assume that such a basis
can be found and let the base vectors be the rows of a matrix deNai€d). How to extract such a basis will be
dealt with in Sectior2.3. By inspection of §), it can be realized that the dimension)f (M (s)) (i.e. the number
of rows of Ny (s)) is

dimNL(M(s)) =m —rankGq(s) =m — kg

wherem is the number of outputs, i.e. the dimensionydf), andk, is the number of disturbances, i.e. the
dimension ofd(t). The last equality holds only if rant ;(s) = k4, but this should be the normal case.

When a polynomial basid’(s) has been obtained, the second and final step in the residual generator design
is to shape fault-to-residual responses as described next. The minimal polynomiaVvhgsisis irreducible and
because of thisqailath 1980, all decoupling residual generatdpgs) can be parameterized as

Q(s) = ¢(s)Nu(s) (6)

wheregp(s) is an arbitrary rational vector of suitable dimensions. This parameterization vggtpcan e.g. be
used to shape the fault-to-residual response or simply to select one @ {1). Since Ny, (s) is a basis, the
parameterization vectas(s) have minimal number of elements.

The only constraint orp(s) if the residual generatap(s) is to be realizable, it must be chosen such téat (
is proper. This means that the dynamics, i.e. poles, of the residual gen@fajozan be chosen freely. This also
means that the minimal order of a realization of a decoupling filter is determined by the row-degreasiofrited
polynomial basisVy; (s).



2.3 Finding the Minimal Polynomial Basis

The problem of finding a minimal polynomial basis to the left null-space of the rational nidtf# can be solved

by a transformation to a problem of finding a minimal polynomial basis to the left null space of a polynomial matrix.

This transformation can be done in several different ways. In this section, two possibilities are demonstrated, where

one is used if the model is given on transfer function form and the other if the model is given in state-space form.
The motivation for this transformation to a purely polynomial problem, is that there exists well established

theory Kailath 1980 for polynomial matrices. In addition, the generally available software,

(The Polynomial Toolbox 2.0 for Matlab 5998, contains an extensive set of tools for numerical handling of

polynomial matrices.

State-Space Solution

Assume that the system is described in state-space form,
#(t) = Ax(t) + Byu(t) + Bad(t) (7a)
y(t) = Cux(t) + Dyu(t) + Dad(t) (7b)

Then it is convienient to use theystem matrixn state-space fornRosenbrocki970 to find the left null-space to
M (s). Denote the system matrid(s), describing the system with disturbances as inputs:

M(s) = [(510 A) gﬂ

Also define the matrix’ as

I —-D,
P= [0 —Bu]

Then the following theorem gives a direct method on how to find a minimal polynomial basis(f/ (s)) via the
system matrix.

Theorem 1. LetV (s) be a minimal polynomial basis fo¥, (M;(s)) and let the paif A, [B,, Bg4]} be controllable.
ThenW (s) = V(s)P is a minimal polynomial basis fax, (M (s)).

The proof of this theorem can be found iArisk & Nyberg19993. In conclusion, the problem of finding a
minimal polynomial basis to a general rational matrix has been transformed into finding a minimal polynomial basis
to a specific matrix pencil, in this case the system matfixs).

Frequency Domain Solution

If the model is given on transfer function form, one way of transforming the rational problem to a polynomial
problem is to perform a right MFD o/ (s), i.e.

M(s) = My (s)D~\(s) ®)
One simple example is
M(s) = My (s)d™"(s)

whered(s) is the least common multiple of all denominators. By finding a polynomial basis for the left null-space of
thepolynomialmatrix M, (s), a basis is found also for the left null-spaceldf s). No solutions are missed because
D(s) (e.g.d(s)) is of full normal rank. Thus the problem of finding a minimal polynomial basi§'tg M (s)) has

been transformed into finding a minimal polynomial basimqj\?l(s)).



3 Design Example: Aircraft Dynamics

This model, taken from\Jaciejowski1989), represents a linearized model of vertical-plane dynamics of an aircraft.
This section includes MrLAB code of central operations. The inputs and outputs of the model are

] Inputs \ Outputs \
uy: spoiler angle [tenth of a degree]y;: relative altitude [m]
ug: forward acceleration [ms’] yo. forward speed [ms']
usz. elevator angle [degrees] ys. Pitch angle [degrees]

The following Matlab-code defines model equations:

%% Define state-space matrices

>> A = [0, 0, 1.1320, 0,-1
0,-0.0538,-0.1712, 0,0.0705
0, 0, 0, 1,0
0, 0.0485, 0,-0.8556,-1.0130
0,-0.2909, 0, 1.0532,-0.6859];
>> B = [0,0,0
-0.1200,1,0
0,0,0

4.4190,0,-1.6650
1.5750,0,-0.0732];

>> C
>> D

[eye(3) zeros(3,2)];
zeros(3,3);

%% Form the transfer functions and initialize some constants
>> Gu = ss(A,B,C,D);

>> n = size(Al);

>> [nmeas,nctrl]] = size(Gu);

Suppose the faults of interest are sensor-faults (dengtefd, andf3), and actuator-faults (denoted, f5, and
f6)- Also, assume that the faults are modeled with additive fault models. The total model, including fault models
then becomes:

Y1 U fa fi
Yo | = G(s) uz | + | fs + | f2
Y3 u3 fe I3

whereG(s) = C(sI — A)"'B + D. Thus, the transfer function from fault vectgrto measurement vectar
becomes(, ;(s) = [I5 G(s)]. The design example is to design a residual genet@atey that decouples faults in
the elevator angle actuator, i.£; is considered a disturbance during the design. The maty{x) from Equatior2
corresponds to all signals that are to be decoupled, i.e. considered disturbances. In tlii% @adsecomes the
column inG,¢(s) corresponding tdfs, i.e. the third column irG(s). Matrix G¢(s) corresponds to the monitored
faults and thereforé ;(s) becomes the rest of the columns@f;(s). The following Matlab-code defines the
transferfunctions from faults and disturbances.

>> Gd = Gu(;,3);

>> Gyf = [eye(3,3) Gu];
>> ndist = size(Gd,2);
>> nfault = size(Gyf,2);

The next step in the design is to fiddy, (s). Before using Theorerh, the controllability requirement needs to
be checked. Matlab gives

>> B_d = B(;,3);
>> D_d = D(;,3);
>> rank(ctrb(A,[B B_d]))



ans =

5

i.e. the controllability requirement is fulfilled. The Polynomial Toolbox macull  (computation of the right
null-space of a polynomial matrix) can then be used to compute the required left null-basis with the help of the
transpose operator

>> Ms = [C D_d;-(s*eye(n)-A) B_d)];
>> P = [eye(nmeas) -D;zeros(n,nmeas) -B];

>> Nm null(Ms.”).”*P

Nm =
0.071s 0.054 + s 0.091 0.12 -1 0
15s + 23s72 -6.7 -17 - 0.94s + s72 31 0 0

The second method, the frequency domain approach can also be used. Direct calculations give

>> M = minreal([Gu Gd;eye(nctrl) zeros(nctrl,ndist)]);
>> [N,D] = ss2rmf(M.a, M.b, M.c, M.d);
>> Nm2 = null(N.").

Nm2 =
0.071s 0.054 + s 0.091 0.12 -1 0
15s + 23s"2 -6.7 -17 - 0.94s + s°2 31 0 O

wheress2rmf is a macro of the Polynomial Toolbox that converts a state-space model to a right MFD. As can
be seen, the bases are identical. A minimal polynomial basis is not unique, but the algorithm implemented in the
toolboxnull command is based on a canonical echelon form resulting in identical bases. The above basis has a
natural interpretation. It means that the following equations hold in the fault-free case and also for all values of the
actuator faultfs = d.

0.07191 + 92 + 0.054y2 + 0.091ys + 0.12u1 — ug =0 9)
2341 + 15y1 — 6.7y + 43 — 0.94y3 — 17y3 + 31ug =0 (20)
The final step in the design is to choose the parametrization we€tdr In a first design, utilize the first relation
(9) and add low-pass dynamics by setting
1

o(s) = T 711 0] (11)

Matlab-code to form the residual generator:

>> [Qa,Qb,Qc,Qd] = Imf2ss([1,0]*Nm,s+1);
>> Q = ss(Qa,Qb,Qc,Qd);

To evaluate the design, both decoupling properties and fault sensitivity need to be analyzed? Bimes the
transfer functions from faults to the residual and the decoupling of disturbances and control signals is evaluated by
calculating||Q(s)M (s)|l.c = —211 dB. It is clear that the decoupling has suceeded, down to machine precision,
and that there is a nonzero gain from all faults besjeshich was to be decoupled.

Since the null-space had two basis vectors, we have some freedom in using both these relationsBj@md.e. (

(10), to form the residual generator. By letting

1
(s+1)2
i.e. use a linear combination of the two basis vectors and add 2nd order low-pass dynamics to form the residual
generator. Here, at least a 2nd order low-pass link was needed since the row-degree of the second basis vector

was?2. The residual generator is also normed to have the same DC-gain as the first design to be able to do some
comparison. Matlab-code to form the residualgenerator:

o(s) = 1 —1], (12)
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Figure 2: Transfer functions from the 6 faults to the residual. Note thatGasiliecoupled, i.e. gaidfrom fs tor.

>> [Q2a,Q2b,Q2c,Q2d] = Imf2ss([1,-1]*Nm,(s+1)"2);
>> Q2 = ss(Q2a,Q2b,Q2c,Q2d);

% Normalize to equal DC-gain of Q(s) and Q2(s)
>> Q2 = svd(evalfr(minreal(Q),0))/svd(evalfr(minreal(Q2),0))*Q2;

Evaluation of decoupling and fault sensitivity properties of this second design is shown in RBgunese fault
sensitivity is shown. calculating@Q(s)M (s)|l.c = —240 dB shows that the decoupling, also here has succeded
down to machine precision. This second design shows how the design freedom availaple égan be used to
shape important transfer functions and still keep the important decoupling property.
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