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Abstract

A brief introduction to the residual generation problem for fault diagnosis in linear systems is given and a solution
based on polynomial methods are outlined. Also, a design example, complete with MATLAB code illustrates how
the Polynomial Toolbox can be used in the design of residual generators. For more detailed information on the
design method, see e.g. (Frisk & Nyberg1999b, Nyberg & Frisk1999).
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1 Introduction

A model baseddiagnosis system commonly consists of aresidual generatorfollowed by thresholds and some
decision logic. The residual generator filters the known signals and generates a signal, theresidual, that should be
small (ideally 0) in the fault-free case and large when a fault is acting on the system. In Figure1, it is illustrated
how the residual generator is connected to the real system. The figure also shows that not only the control signalu
influences the system, but also disturbancesd and the faultsf that we wish to detect. Both disturbances and faults
are here modeled as inputsignalsto the system. In ordernot to make the residual sensitive to the disturbances
d, the disturbances must bedecoupled. By using several residuals, or a vector-valued residual, where not only
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Figure 1: A residual generator.

disturbances but also different subset of faults are decoupled, it is possible to achieve isolation. Isolation means
distinguishing between different faults and locate the fault component. This is the basic idea of a diagnosis system
using the principle ofstructured residuals(Gertler1998) or the more general principle ofstructured hypothesis
tests(Nyberg 1999). The set of faults that, along with the disturbances, are decoupled in a residual are called
non-monitoredfaults.

2 Theory

This demonstration showslinear residual generation forlinear systems with no model uncertainties. A general
linear residual generator can be written

r = Q(s)
(

y
u

)
(1)

i.e. Q(s) is a multi-dimensional transfer-matrix with known signalsy(t) andu(t) as inputs and a scalarresidual
as output. The requirement on the residual generator, i.e.Q(s), is that it is sensitive to monitored faults and not
sensitive to disturbances (including non-monitored faults).

This section introduces linear residual generation problem and also briefly describes the minimal polynomial
basis solution. All derivations are performed in the continuous case but the corresponding results for the time-
discrete case can be obtained by substitutings by z andimproperby non-causal.

2.1 Linear Residual Generation

The systems studied in this work are assumed to be on the form

y = Gu(s)u + Gd(s)d + Gf (s)f (2)

wherey(t) is measurements,u(t) is known inputs to the system,d(t) is unknown disturbances including non-
monitored faults, andf(t) is the monitored faults. The filterQ(s) in (1) is a residual generator if and only if the
transfer function fromu andd to r is zero, i.e.limt→∞ r(t) = 0 for all d(t) andu(t) whenf(t) = 0. To be able to
detect faults, it is also required thatr(t) 6= 0 whenf(t) 6= 0.
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Inserting (2) into (1) gives

r = Q(s)
[
Gu(s) Gd(s)

I 0

] [
u
d

]
+ Q(s)

[
Gf (s)

0

]
f

To maker(t) = 0 whenf(t) = 0, it is required that disturbances and the control signal aredecoupled, i.e. forQ(s)
to be a residual generator, it must hold that

Q(s)
[
Gu(s) Gd(s)

I 0

]
= 0 (3)

Also, it is required that

Q(s)
[
Gf (s)

0

]
6= 0 (4)

with suitable properties, e.g. adequate DC-gain from faults. Thus, the linear residual generation problem is to find
a suitableQ(s) that fulfills (3) and (4).

2.2 A Solution based on Minimal Polynomial Bases

Equation (3) implies thatQ(s) must belong to the left null-space of

M(s) =
[
Gu(s) Gd(s)

I 0

]
(5)

This null-space is denotedNL(M(s)). The matrixQ(s) thus need to fulfill two requirements: belong to the left
null-space ofM(s) andgive good fault sensitivity properties in the residual. If, in a first step of the design,all Q(s)
that fulfills the first requirement is found, then aQ(s) with good fault sensitivity properties can be selected. Thus,
in a first step of the design of the residual generatorQ(s) we need not considerf or Gf (s). The problem is then to
find all rationalQ(s) ∈ NL(M(s)). Of special interest are the residual generators with least McMillan degree, i.e.
the number of states in a minimal realization.

Finding allQ(s) ∈ NL(M(s)) can be done by finding a minimal basis for the rational vector-spaceNL(M(s)).
A minimal basis for a rational vector-space is apolynomialbasis (Forney1975). For now, assume that such a basis
can be found and let the base vectors be the rows of a matrix denotedNM (s). How to extract such a basis will be
dealt with in Section2.3. By inspection of (5), it can be realized that the dimension ofNL(M(s)) (i.e. the number
of rows ofNM (s)) is

dim NL(M(s)) = m− rankGd(s) = m− kd

wherem is the number of outputs, i.e. the dimension ofy(t), andkd is the number of disturbances, i.e. the
dimension ofd(t). The last equality holds only if rankGd(s) = kd, but this should be the normal case.

When a polynomial basisNM (s) has been obtained, the second and final step in the residual generator design
is to shape fault-to-residual responses as described next. The minimal polynomial basisNM (s) is irreducible and
because of this (Kailath1980), all decoupling residual generatorsQ(s) can be parameterized as

Q(s) = ϕ(s)NM (s) (6)

whereϕ(s) is an arbitrary rational vector of suitable dimensions. This parameterization vectorϕ(s) can e.g. be
used to shape the fault-to-residual response or simply to select one row inNM (s). SinceNM (s) is a basis, the
parameterization vectorϕ(s) have minimal number of elements.

The only constraint onϕ(s) if the residual generatorQ(s) is to be realizable, it must be chosen such that (6)
is proper. This means that the dynamics, i.e. poles, of the residual generatorQ(s) can be chosen freely. This also
means that the minimal order of a realization of a decoupling filter is determined by the row-degrees of theminimal
polynomial basisNM (s).
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2.3 Finding the Minimal Polynomial Basis

The problem of finding a minimal polynomial basis to the left null-space of the rational matrixM(s) can be solved
by a transformation to a problem of finding a minimal polynomial basis to the left null space of a polynomial matrix.
This transformation can be done in several different ways. In this section, two possibilities are demonstrated, where
one is used if the model is given on transfer function form and the other if the model is given in state-space form.

The motivation for this transformation to a purely polynomial problem, is that there exists well established
theory (Kailath1980) for polynomial matrices. In addition, the generally available software,
(The Polynomial Toolbox 2.0 for Matlab 51998), contains an extensive set of tools for numerical handling of
polynomial matrices.

State-Space Solution

Assume that the system is described in state-space form,

ẋ(t) = Ax(t) + Buu(t) + Bdd(t) (7a)

y(t) = Cx(t) + Duu(t) + Ddd(t) (7b)

Then it is convienient to use thesystem matrixin state-space form (Rosenbrock1970) to find the left null-space to
M(s). Denote the system matrixMs(s), describing the system with disturbances as inputs:

Ms(s) =
[

C Dd

−(sI −A) Bd

]
Also define the matrixP as

P =
[
I −Du

0 −Bu

]
Then the following theorem gives a direct method on how to find a minimal polynomial basis toNL(M(s)) via the
system matrix.

Theorem 1. LetV (s) be a minimal polynomial basis forNL(Ms(s)) and let the pair{A, [Bu Bd]} be controllable.
ThenW (s) = V (s)P is a minimal polynomial basis forNL(M(s)).

The proof of this theorem can be found in (Frisk & Nyberg1999a). In conclusion, the problem of finding a
minimal polynomial basis to a general rational matrix has been transformed into finding a minimal polynomial basis
to a specific matrix pencil, in this case the system matrixMs(s).

Frequency Domain Solution

If the model is given on transfer function form, one way of transforming the rational problem to a polynomial
problem is to perform a right MFD onM(s), i.e.

M(s) = M̃1(s)D̃−1(s) (8)

One simple example is

M(s) = M̃1(s)d−1(s)

whered(s) is the least common multiple of all denominators. By finding a polynomial basis for the left null-space of
thepolynomialmatrixM̃1(s), a basis is found also for the left null-space ofM(s). No solutions are missed because
D̃(s) (e.g.d(s)) is of full normal rank. Thus the problem of finding a minimal polynomial basis toNL(M(s)) has
been transformed into finding a minimal polynomial basis toNL(M̃1(s)).
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3 Design Example: Aircraft Dynamics

This model, taken from (Maciejowski1989), represents a linearized model of vertical-plane dynamics of an aircraft.
This section includes MATLAB code of central operations. The inputs and outputs of the model are

Inputs Outputs

u1: spoiler angle [tenth of a degree]y1: relative altitude [m]
u2: forward acceleration [ms−2] y2: forward speed [ms−1]
u3: elevator angle [degrees] y3: Pitch angle [degrees]

The following Matlab-code defines model equations:

%% Define state-space matrices
>> A = [0, 0, 1.1320, 0,-1

0,-0.0538,-0.1712, 0,0.0705
0, 0, 0, 1,0
0, 0.0485, 0,-0.8556,-1.0130
0,-0.2909, 0, 1.0532,-0.6859];

>> B = [0,0,0
-0.1200,1,0

0,0,0
4.4190,0,-1.6650
1.5750,0,-0.0732];

>> C = [eye(3) zeros(3,2)];
>> D = zeros(3,3);

%% Form the transfer functions and initialize some constants
>> Gu = ss(A,B,C,D);
>> n = size(A,1);
>> [nmeas,nctrl] = size(Gu);

Suppose the faults of interest are sensor-faults (denotedf1, f2, andf3), and actuator-faults (denotedf4, f5, and
f6). Also, assume that the faults are modeled with additive fault models. The total model, including fault models
then becomes: y1

y2

y3

 = G(s)

u1

u2

u3

 +

f4

f5

f6

 +

f1

f2

f3


whereG(s) = C(sI − A)−1B + D. Thus, the transfer function from fault vectorf to measurement vectory
becomes,Gyf (s) = [I3 G(s)]. The design example is to design a residual generatorQ(s) that decouples faults in
the elevator angle actuator, i.e.f6 is considered a disturbance during the design. The matrixGd(s) from Equation2
corresponds to all signals that are to be decoupled, i.e. considered disturbances. In this case,Gd(s) becomes the
column inGyf (s) corresponding tof6, i.e. the third column inG(s). Matrix Gf (s) corresponds to the monitored
faults and thereforeGf (s) becomes the rest of the columns ofGyf (s). The following Matlab-code defines the
transferfunctions from faults and disturbances.

>> Gd = Gu(:,3);
>> Gyf = [eye(3,3) Gu];
>> ndist = size(Gd,2);
>> nfault = size(Gyf,2);

The next step in the design is to findNM (s). Before using Theorem1, the controllability requirement needs to
be checked. Matlab gives

>> B_d = B(:,3);
>> D_d = D(:,3);
>> rank(ctrb(A,[B B_d]))
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ans =

5

i.e. the controllability requirement is fulfilled. The Polynomial Toolbox macronull (computation of the right
null-space of a polynomial matrix) can then be used to compute the required left null-basis with the help of the
transpose operator

>> Ms = [C D_d;-(s*eye(n)-A) B_d)];
>> P = [eye(nmeas) -D;zeros(n,nmeas) -B];
>> Nm = null(Ms.’).’*P

Nm =

0.071s 0.054 + s 0.091 0.12 -1 0
15s + 23sˆ2 -6.7 -17 - 0.94s + sˆ2 31 0 0

The second method, the frequency domain approach can also be used. Direct calculations give

>> M = minreal([Gu Gd;eye(nctrl) zeros(nctrl,ndist)]);
>> [N,D] = ss2rmf(M.a, M.b, M.c, M.d);
>> Nm2 = null(N.’).’

Nm2 =

0.071s 0.054 + s 0.091 0.12 -1 0
15s + 23sˆ2 -6.7 -17 - 0.94s + sˆ2 31 0 0

wheress2rmf is a macro of the Polynomial Toolbox that converts a state-space model to a right MFD. As can
be seen, the bases are identical. A minimal polynomial basis is not unique, but the algorithm implemented in the
toolboxnull command is based on a canonical echelon form resulting in identical bases. The above basis has a
natural interpretation. It means that the following equations hold in the fault-free case and also for all values of the
actuator faultf6 = d.

0.071ẏ1 + ẏ2 + 0.054y2 + 0.091y3 + 0.12u1 − u2 = 0 (9)

23ÿ1 + 15ẏ1 − 6.7y2 + ÿ3 − 0.94ẏ3 − 17y3 + 31u1 = 0 (10)

The final step in the design is to choose the parametrization vectorϕ(s). In a first design, utilize the first relation
(9) and add low-pass dynamics by setting

ϕ(s) =
1

s + 1
[1 0] (11)

Matlab-code to form the residual generator:

>> [Qa,Qb,Qc,Qd] = lmf2ss([1,0]*Nm,s+1);
>> Q = ss(Qa,Qb,Qc,Qd);

To evaluate the design, both decoupling properties and fault sensitivity need to be analyzed. Figure2 shows the
transfer functions from faults to the residual and the decoupling of disturbances and control signals is evaluated by
calculating‖Q(s)M(s)‖∞ = −211 dB. It is clear that the decoupling has suceeded, down to machine precision,
and that there is a nonzero gain from all faults besidesf6 which was to be decoupled.

Since the null-space had two basis vectors, we have some freedom in using both these relationships, i.e. (9) and
(10), to form the residual generator. By letting

ϕ(s) =
1

(s + 1)2
[1 − 1], (12)

i.e. use a linear combination of the two basis vectors and add 2nd order low-pass dynamics to form the residual
generator. Here, at least a 2nd order low-pass link was needed since the row-degree of the second basis vector
was2. The residual generator is also normed to have the same DC-gain as the first design to be able to do some
comparison. Matlab-code to form the residualgenerator:
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Figure 2: Transfer functions from the 6 faults to the residual. Note that fault6 is decoupled, i.e. gain0 from f6 to r.

>> [Q2a,Q2b,Q2c,Q2d] = lmf2ss([1,-1]*Nm,(s+1)ˆ2);
>> Q2 = ss(Q2a,Q2b,Q2c,Q2d);

% Normalize to equal DC-gain of Q(s) and Q2(s)
>> Q2 = svd(evalfr(minreal(Q),0))/svd(evalfr(minreal(Q2),0))*Q2;

Evaluation of decoupling and fault sensitivity properties of this second design is shown in Figures3 where fault
sensitivity is shown. calculating‖Q(s)M(s)‖∞ = −240 dB shows that the decoupling, also here has succeded
down to machine precision. This second design shows how the design freedom available inϕ(s) can be used to
shape important transfer functions and still keep the important decoupling property.
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Figure 3: Transfer functions from the 6 faults to the residual. Note that fault6 is decoupled, i.e. gain0 from f6 to r.
The dashed lines corresponds to the results of the first design withϕ(s) given by (11). The solid lines corresponds
to the second design whereϕ(s) given by (12).
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