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Preface

This document and its companion volume Commands provide detailed information
about Version 2.0 of the Polynomial Toolbox for MATLAB.

The Polynomial Toolbox is a package for systems, signals and control analysis and
design based on advanced polynomial methods. It consists of more than 200 M-files in
MATLAB code and is easy to use.

Key Features

• Simple input, manipulation and
display of polynomials and
polynomial matrices based on a
new polynomial matrix object

• Overloaded operations and
functions, solvers for numerous
linear and quadratic matrix poly-
nomial equations

• Polynomial matrices with complex
coefficients for applications in
signal processing

• New generation of numerical
algorithms: easy, fast, reliable

• Polynomial Matrix Editor, 2-D and
3-D color plots

• Continuous-time and discrete-time
system and signal models based on
polynomial matrix fractions

• Classical and robustness analysis
for LTI systems and filters

• Classical and optimal design tools:
pole placement, all stabilizing
controllers, dead-beat, H2 and
LQG

• H-infinity optimization in a
generality not found elsewhere

• Robust control with parametric
uncertainties: single parameter,
interval and polytopic

• Conversion to and from LTI
objects of the Control System
Toolbox; and polynomial objects
defined in the Symbolic Math
Toolbox

• SIMULINK block set for LTI
systems described by polynomial
matrix fractions

The Polynomial Toolbox implements new original algorithms that are fast and
reliable.

Numerous convertors enable direct cooperation with the Control System Toolbox and
the Symbolic Math Toolbox. A SIMULINK block set for LTI systems described by
polynomial matrix fractions is also provided.
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 1 Quick Start

Initialization

Every Polynomial Toolbox session starts with the initialization command pinit:

pinit

Polynomial Toolbox initialized. To get started, type one of

these: helpwin or poldesk. For product information, visit

www.polyx.com or www.polyx.cz.

This function creates global polynomial properties and assigns them to their default
values. If you place this command in your startup.m file then the Polynomial
Toolbox is automatically initialized. If you include lines such as

path(path,'c:\Matlab\toolbox\polynomial')

pinit

in the startup.m file in the folder in which you start MATLAB then the toolbox is
automatically included in the search path and initialized each time you start
MATLAB.

Help

To see a list of all the commands and functions that are available type

help polynomial

To get help on any of the toolbox commands, such as axxab, type

help axxab

To get help on overloaded commands, that is, commands that also exist for other
objects than polynomial matrices, such as rank, type

help pol/rank
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How to define a polynomial matrix

Polynomial matrices may be looked at in two different ways.

You may directly enter a polynomial matrix by typing its entries. Upon initialization
the Polynomial Toolbox defines several indeterminate variables for polynomials and
polynomial matrices. One of them is s. Thus, you can simply type

P = [  1+s      s^2

      2*s^3   1+2*s+s^2 ]

to define the polynomial matrix

P s
s s

s s s
( ) = +

+ +

L
NMM

O
QPP

1

2 1 2

2

3 2

MATLAB returns

P =

     1 + s     s^2

     2s^3      1 + 2s + s^2

The Polynomial Toolbox displays polynomial matrices by default in this style.

We may also render the polynomial matrix P  as

P s
s s

s s s
s s s

P P P P

( ) = +
+ +

L
NMM

O
QPP
=
L
NM

O
QP +

L
NM

O
QP +

L
NM

O
QP +

L
NM

O
QP

1

2 1 2

1 0

0 1

1 0

0 2

0 1

0 1

0 0

2 0

2

3 2
2 3

0 1 2 3

123 123 123 123

Polynomial matrices may be defined this way by typing

P0 = [ 1 0; 0 1 ];

P1 = [ 1 0; 0 2 ];

P2 = [ 0 1; 0 1 ];

P3 = [ 0 0; 2 0 ];   

P = pol([P0 P1 P2 P3],3)

MATLAB again returns
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P =

     1 + s     s^2

     2s^3      1 + 2s + s^2

The display format may be changed to “coefficient matrix style” by the command

pformat coef

Typing the name of the matrix

P

now results in

Polynomial matrix in s: 2-by-2,  degree: 3

P =

  Matrix coefficient at s^0 :

     1     0

     0     1

  Matrix coefficient at s^1 :

     1     0

     0     2

  Matrix coefficient at s^2 :

     0     1

     0     1

  Matrix coefficient at s^3 :

     0     0

     2     0
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Simple operations with polynomial matrices

In version 2 of the Polynomial Toolbox polynomial matrices are objects for which all
standard operations are defined.

Define the polynomial matrices

P = [ 1+s 2; 3 4], Q = [ s^2 s; s^3 0]

P =

     1 + s     2

     3         4

Q =

     s^2     s

     s^3     0   

The sum and product of P and Q follow easily:

S = P+Q   

S =

     1 + s + s^2     2 + s

     3 + s^3         4

R = P*Q

R =

     s^2 + 3s^3      s + s^2

     3s^2 + 4s^3     3s

All standard MATLAB operations to concatenate matrices or selecting submatrices
also apply to polynomial matrices. Typing

T = [P Q]

results in

Addition,
subtraction and
multiplication

Concatenation
and working
with
submatrices
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T =

     1 + s     2     s^2     s

     3         4     s^3     0   

The last row of T may be selected by typing

t = T(2,:)

t =

     3     4     s^3     0   

Submatrices may be assigned values by commands such as

T(:,1:2) = eye(2)

T =

     1     0     s^2     s

     0     1     s^3     0   

It is easy to extract the coefficient matrices of a polynomial matrix. Given T, the
coefficient matrix of s 2  may be retrieved as

T{2}   

ans =

           0     0     1     0

     0     0     0     0

The coefficients of the (1,3) entry of T follow as

T{:}(1,3)

ans =

     0     0     1     0

Given

T

Coefficients and
coefficient
matrices

Conjugation
and
transposition



6 Quick Start

T =

     1     0     s^2     s

     0     1     s^3     0   

the standard MATLAB conjugation operation results in

T'

ans =

     1       0

     0       1

     s^2    -s^3

    -s       0   

Transposition follows by typing

T.'

 ans =

     1       0

     0       1

     s^2     s^3

     s       0    

The command transpose(T) is synonymous with T.'

Advanced operations and functions

The Polynomial Toolbox knows many advanced operations and functions. After
defining

P = [ 1+s   2

       3  4+s^2 ];   

try a few by typing for instance det(P), roots(P), or smith(P).
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The commands may be grouped in the categories listed in Table 1. A full list of all
available commands is available in the companion volume Commands. The same list
appears after typing

help polynomial   

in MATLAB.

Table 1. Command categories

Global structure Numerical routines

Polynomial matrix properties Canonical and reduced forms

Convertors Control routines

Overlodaded operations Equation solvers

Overloaded functions Factorizations

Basic functions (other than overloaded) Simulink

Advanced functions (other than
overloaded)

Visualization

Special matrices Graphic user interface

Matrix pencil routines Demonstrations and help

Many of the commands are reviewed in Chapter 2, Tutorial.

Chapter 3, The Polynomial Matrix Editor, describes how to input and edit
complicated polynomial matrices.

Chapter 4, Polynomial matrix fractions and LTI systems, describes the
commands that are available to work with linear time-invariant systems defined by
polynomial matrix fractions.

Chapter 5, Control system design, discusses several control system design routines.

Chapter 6, Robust control with parametric uncertainties, describes and
illustrates the use of routines that are available for parametric robustness analysis.
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Chapter 7, Numerical methods for polynomial matrices, gives a concise review of
numerical methods that exist for computations involving polynomial matrices.

Chapter 8, Demos and Applications, demonstrates a variety of problems for which
the Polynomial Toolbox may be used.

Chapter 9, Reference, provides a description of the properties and structure of
polynomial matrix objects and ways to change or edit them.

The companion volume Commands, finally, contains detailed descriptions of each of
the Polynomial Toolbox commands and functions.
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 2 Tutorial

Introduction

In this chapter we review in a tutorial style many of the functions and operations
defined for polynomials and polynomial matrices. Functions and operations for LTI
systems defined by polynomial matrix fractions are discussed in Chapter 4,
Polynomial matrix fractions and LTI systems. Chapter 5, Control system design
covers the applications of polynomial matrices in control system design.

More detailed information is available in Chapter 9, Reference, and in the manual
pages included in the companion volume Commands.

Entering polynomial matrices

Polynomials and polynomial matrices are most easily entered using one of the
indeterminate variables s, p, z, q, z^–1 or d that are recognized by the Polynomial
Toolbox, combined with the usual MATLAB conventions for entering matrices. Thus,
typing

P = [  1+s     2*s^2

      2+s^3     4  ]   

defines the matrix

P s
s s

s
( ) = +

+

L
NMM

O
QPP

1 2

2 4

2

3

and returns

P =

     1 + s       2s^2

     2 + s^3     4    
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In a system and control theoretic context, the indeterminates s and p are usually
associated with continuous time, and are closely related to the differential operator
x t x t( ) &( )Æ .

The indeterminates z and q are associated with the discrete-time one-step shift
operator x xt tÆ +1, and the indeterminates d and z^–1 with the delay operator
x xt tÆ -1. The indeterminate z^–1 may be entered with arbitary nonnegative integral
powers. For typing convenience z^–1 may be abbreviated to zi. Thus,

P = 1+z^-1+z^-2   

P =

     1 + z^-1 + z^-2   

and

P = 1+zi+zi^2   

P =

     1 + z^-1 + z^-2   

return the same result.

Note that if any of the default indeterminates is redefined as a variable then it is no
longer available as an indeterminate. Typing

s = 1;

P = 1+s^2   

results in

P =

     2   

To free the variable simply type

clear s;

P = 1+s^2   

P =
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     1 + s^2

Polynomials and polynomial matrices may also be entered in terms of their
coefficients or coefficient matrices. For this purpose the pol command is available.
Typing

P0 = [1 2;3 4];

P1 = [3 4;5 1];

P2 = [1 0;0 1];

P = pol([P0 P1 P2],2,'s')   

for instance, defines the polynomial matrix

P =

     1 + 3s + s^2     2 + 4s

     3 + 5s           4 + s + s^2   

according to

P s P P s P s( ) = + +0 1 2
2

More complicated polynomial matrices may be entered and edited with the help of the
Polynomial Matrix Editor (see Chapter 3).

After the Polynomial Toolbox has been started up the default indeterminate variable
is s. This implies, among other things, that the command

P = pol([P0 P1 P2],2)

returns a polynomial matrix

P =

     1 + 3s + s^2     2 + 4s

     3 + 5s           4 + s + s^2   

in the indeterminate s.  The indeterminate variable may be changed with the help of
the gensym command: typing

gensym z; pol([P0 P1 P2],2)   

The pol
command

The Polynomial
Matrix Editor

Changing the
default
indeterminate
variable
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for instance, results in

ans =

     1 + 3z + z^2     2 + 4z

     3 + 5z           4 + z + z^2   

The indeterminate variable v is automatically replaced by the default indeterminate
variable. Thus, after the default indeterminate variable has been set to z by the
command

gensym z   

then

V = 1+v^2+3*v^3   

returns

V =

     1 + z^2 + 3z^3   

Standard MATLAB conventions may be used to concatenate polynomial and standard
matrices:

[P 1+s 3]   

results in

ans =

     1 + s^2     1 + s     3

Submatrices may be selected such as in

ans(2:3)   

ans =

     1 + s     3

All usual MATLAB subscripting and colon notations are available.

Concatenation
and working
with
submatrices



Basic operations on polynomial matrices 13

The Polynomial Toolbox for MATLAB

It is easy to extract the coefficient matrices of a polynomial matrix. Given

T = [ 1+s  2  s^2  s

       3   4  s^3  0 ];   

the coefficient matrix of s 2  may be retrieved as

T{2}

ans =

     0     0     1     0

     0     0     0     0   

The coefficients of the (1,3) entry of T follow as

T{:}(1,3)

ans =

     0     0     1     0    

Basic operations on polynomial matrices

Define the polynomial matrices

P = [ 1+s 2; 3 4], Q = [ s^2 s; s^3 0]

P =

     1 + s     2

     3         4

Q =

     s^2     s

     s^3     0   

The sum and product of P and Q follow easily:

S = P+Q

Coefficients and
coefficient
matrices

Addition,
subtraction and
multiplication
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S =

     1 + s + s^2     2 + s

     3 + s^3         4   

R = P*Q

R =

     s^2 + 3s^3      s + s^2

     3s^2 + 4s^3     3s   

The command

R+3   

ans =

     3 + s^2 + 3s^3      3 + s + s^2

     3 + 3s^2 + 4s^3     3 + 3s

obviously is interpreted as the instruction to add three times the unit matrix to R.
The command

3*R   

ans =

     3s^2 + 9s^3      3s + 3s^2

     9s^2 + 12s^3     9s   

yields the expected result.

The determinant of a square polynomial matrix is defined exactly as its constant
matrix counterpart. In fact, its computation is not much more difficult:

P = [1 s s^2; 1+s s 1-s; 0 –1 –s]

P =

     1         s     s^2

     1 + s     s     1 - s

Determinants
and inverses
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     0        -1    -s

det(P)   

ans =

     1 - s - s^2   

If its determinant happens to be constant then the polynomial matrix is called
unimodular:

U =

     2 - s - 2s^2     2 - 2s^2     1 + s

     1 - s - s^2      1 - s^2      s

    -1 - s           -s            1

det(U)   

Constant polynomial matrix: 1-by-1

ans =

     1   

If a matrix is suspected of unimodularity then one can make it sure by a special
tester

isunimod(U)   

ans =

     1   

Also the adjoint matrix is defined as for constant matrices. The adjoint is a
polynomial matrix and may be computed by typing

adj(P)   

ans =

     1 - s - s^2     0     s - s^2 - s^3

     s + s^2        -s    -1 + s + s^2 + s^3



16 Tutorial

    -1 - s           1    -s^2    

Quite to the contrary, the inverse of a square polynomial matrix is usually rational.
Based on the well-known formula

P
P

P- =1 1

det
adj ,

the inverse is computed and returned in terms of the adjoint and the determinant.

[adjP,p] = inv(P)  

adjP =

    -1 + s + s^2     0    -s + s^2 + s^3

    -s - s^2         s     1 - s - s^2 - s^3

     1 + s          -1     s^2

p =

    -1 + s + s^2   

As expected,

P*adj(P)/det(P)   

equals the identity matrix

Constant polynomial matrix: 3-by-3

ans =

     1     0     0

     0     1     0

     0     0     1  

On the other hand, unimodular matrices do have a polynomial inverse:

[adjU,u] = inv(U)   

adjU =

     1    -2 - s + s^2    -1 + s + s^2 - s^3
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    -1     3 + s - s^2     1 - 2s - s^2 + s^3

     1    -2 + s^2         s - s^3

Constant polynomial matrix: 1-by-1

u =

     1   

Indeed,

U*adj(U)

Constant polynomial matrix: 3-by-3

ans =

     1     0     0

     0     1     0

     0     0     1

If the matrix is nonsquare but has full rank then a usual partial replacement for the
inverse is provided by the generalized Moore-Penrose pseudoinverse, which is
computed by the pinv function.

Q = P(:,1:2)   

Q =

     1         s

     1 + s     s

     0        -1   

[Qpinv,d] = pinv(Q)   

Qpinv =

     1 - s^3       1 + s + s^3     2s + s^2

     s^2 + s^3    -s^2            -2 - 2s - s^2

d =
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     2 + 2s + s^2 + s^4   

Once again,

Qpinv*Q/d   

Constant polynomial matrix: 2-by-2

ans =

     1     0

     0     1   

A polynomial matrix P s( )  has full column rank (or full normal column rank) if it has
full column rank everywhere in the complex plane except at a finite number of points.
Similar definitions hold for full row rank and full rank.

Recall that

P   

P =

     1         s     s^2

     1 + s     s     1 - s

     0        -1    -s   

The rank test

isfullrank(P)  

ans =

     1   

confirms that P has full rank.

The normal rank of a polynomial matrix P s( )  equals

max ( )s C P sŒ rank

Similar definitions apply to the notions of normal column rank and normal row rank.
The rank is calculated by

Rank, bases
and null spaces



Basic operations on polynomial matrices 19

The Polynomial Toolbox for MATLAB

rank(P)  

ans =

     3   

As for constant matrices, rank evaluation may be quite sensitive and an ad hoc
change of tolerance (which may be included as an optional input parameter) may be
helpful for difficult examples.

A polynomial matrix is nonsingular if it has full normal rank.

issingular(P)   

ans =

     0   

There are two important subspaces (more precisely, submodules) associated with a
polynomial matrix A s( ) : its null space and its range (or span). The (right) null space
is defined as the set of all polynomial vectors x s( )  such that A s x s( ) ( ) = 0 . It is
computed by

A = P(1:2,:)   

A =

     1         s     s^2

     1 + s     s     1 - s   

N = null(A)   

N =

     s - s^2 - s^3

    -1 + s + s^2 + s^3

    -s^2    

Here the null space dimension is 1 and its basis has degree 3.
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The range of A s( )  is the set of all polynomial vectors y s( )  such that y s A s x s( ) ( ) ( )=  for
some polynomial vector x s( ) . In the Polynomial Toolbox, the minimal basis of the
range is returned by the command

minbasis(A)   

Constant polynomial matrix: 2-by-2

ans =

     1     0

     2     1   

The roots or zeros of a polynomial matrix P s( )  are those points si  in the complex
plane where P s( )  loses rank.

roots(P)  

ans =

   -1.6180

    0.6180   

The roots can be both finite and infinite. The infinite roots are normally suppressed.
To reveal them, type

roots(P,'all')   

ans =

   -1.6180

    0.6180

       Inf   

Unimodular matrices have no finite roots:

roots(U)  

ans =

     []   

but typically have infinite roots:

Roots and
stability
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roots(U,'all')   

ans =

   Inf

   Inf

   Inf   

If P s( )  is square then its roots are the roots of its determinant det ( )P s , including
multiplicity:

roots(det(P))  

ans =

   -1.6180

    0.6180

The finite roots may be visualized as in Fig. 1 by typing

zpplot(P)

A polynomial matrix is stable if all its roots fall within a relevant stability region.
Three standard stability regions are considered in the Polynomial Toolbox:

• the open left half plane for polynomial matrices in s  and p , which means
Hurwitz stability used for continuous-time systems

• the open unit disc for polynomial matrices in z  and q , which corresponds to
Schur stability for discrete-time systems in forward-shift operators, and

• the exterior of the unit disc for polynomial matrices in z -1  and d , which
corresponds to inverse Schur stability for discrete-time systems in delay
operators.

The macro isstable checks stability chosen according to the variable symbol. Thus,

isstable(s-2)   

ans =

     0   



22 Tutorial

Fig. 1. Locations of the roots of a polynomial matrix

and

isstable(z-2)   

ans =

     0   

but

isstable(z^-1-2)   

ans =

     1   

There are several interesting constant matrices that are composed from the
coefficients of polynomials (or the matrix coefficients of polynomial matrices) and are
frequently encountered in mathematical and engineering textbooks. Given a
polynomial

p v p p v p v p vd
n( ) = + + + +0 1 2

2 L

Special
constant
matrices related
to polynomials
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of degree n we may for instance define the corresponding n n¥  Hurwitz matrix

H

p p p

p p p

p p p

p p p

p

p

p

n n n

n n n

n n n

n n n

n

=

L

N

MMMMMMMM

O

Q

PPPPPPPP

- - -

- -

- - -

- -

1 3 5

2 4

1 3 5

2 4

0

0

0

0 0 0

0 0 0 0

K K

K K

K

K

O

K

,

a k n k¥ +( )  Sylvester matrix (for some k ≥ 1)

S

p p p

p p p

p p p

p

n

n

n

=

L

N

MMMM

O

Q

PPPP

0 1

0 1

0 1

0 0

0 0 0

0 0

L L L

L L

L L L L L L L L

L L L

or an n n¥  companion matrix

 C p

p

p

p

p

p

pn n

n

n

( ) =

- - -

L

N

MMMMMMM

O

Q

PPPPPPP
-

0 1 0

0 0 1 0

0 0 1
0 1 1

L L

L

L L L L L

L L

L L

.

Using the Polynomial Toolbox, we take

p = pol([-1 1 2 3 4 5],5)  

p =

    -1 + s + 2s^2 + 3s^3 + 4s^4 + 5s^5

and simply type

hurwitz(p)   

ans =

     4     2    -1     0     0

     5     3     1     0     0
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     0     4     2    -1     0

     0     5     3     1     0

     0     0     4     2    -1   

or

sylv(p,3)   

ans =

    -1     1     2     3     4     5     0     0     0

     0    -1     1     2     3     4     5     0     0

     0     0    -1     1     2     3     4     5     0

     0     0     0    -1     1     2     3     4     5   

or

compan(p)   

ans =

         0    1.0000         0         0         0

         0         0    1.0000         0         0

         0         0         0    1.0000         0

         0         0         0         0    1.0000

    0.2000   -0.2000   -0.4000   -0.6000   -0.8000   

For a polynomial matrices the block matrix versions are defined and computed in a
fairly obvious manner.

Divisors and multiples

To understand when division of polynomials and polynomial matrices is possible,
consider three polynomials a s( ) , b s( )  and c s( )  such that a s b s c s( ) ( ) ( )= . We say that
b s( )  is a divisor (or factor) of a s( )  or a s( )  is a multiple of b s( ) , and write a s b s( ) ( ) .
This is sometimes also stated as b s( )  divides a s( ) . For example, take

Scalar divisor
and multiple
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b = 1-s; c = 1+s; a = b*c  

a =

     1 - s^2   

As b s( )  is a divisor of a s( ) , the division

a/b   

can be done and results in

ans =

     1 + s   

Of course, the division by b s( )  fails if b s( )  is not a divisor

c/b   

Constant polynomial matrix: 1-by-1

ans =

     NaN   

On the other hand, any n s( )  can be divided by any nonzero d s( )  using another
operation called division with a remainder. This division results in a quotient
q s( ) and a remainder r s( ) :

 n s q s d s r s( ) ( ) ( ) ( )= +

Typically, it is required that deg ( ) deg ( )r s d s< , which makes the result unique. Thus,
dividing

n = (1-s)^2;

by

d = 1+s;  

yields

[q,r] = ldiv(n,d)   

q =

Division

Division with
remainder
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    -3 + s

Constant polynomial matrix: 1-by-1

r =

     4   

Division with remainder is sometimes called Euclidean division.

If a polynomial g s( )  divides both a s( )  and b s( )  then g s( ) is called a common divisor of
a s( )  and b s( ) .  If, furthermore, g s( )  is a multiple of every common divisor of a s( )  and
b s( )  then g s( ) is a greatest common divisor of a s( )  and b s( ) .

If the only common divisors of a s( )  and b s( )  are constants then the polynomials a s( )

and b s( )  are coprime (or  relatively prime). To compute a greatest common divisor of

a = s+s^2;  

and

b = s-s^2;  

type

gld(a,b)   

ans =

     s   

Similarly, the polynomials

c = 1+s; d = 1-s;  

are coprime as

gld(c,d)   

is a constant

Constant polynomial matrix: 1-by-1

ans =

     1   

Greatest
common divisor

Coprimeness
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Coprimeness may also be tested directly

isprime([c,d])   

ans =

     1   

As the two polynomials c and d are coprime, there exist other two polynomials e and f
that satisfy the linear polynomial equation

ce df+ = 1

The polynomials e and f may be computed according to

[e,f] = axbyc(c,d,1)   

Constant polynomial matrix: 1-by-1

e =

     0.5

Constant polynomial matrix: 1-by-1

f =

     0.5   

We check the result by typing

c*e+d*f   

Constant polynomial matrix: 1-by-1

ans =

     1   

If a polynomial m s( )  is a multiple of both a s( )  and b s( )  then m s( )  is called a common
multiple of a s( )  and b s( ) .  If, furthermore, m s( )  is a divisor of every common multiple
of a s( )  and b s( )  then it is a least common multiple of a s( )  and b s( ) :

m = llm(a,b)   

m =

Least common
multiple
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     s - s^3   

The concepts just mentioned are combined in the well-known fact that the product of
a greatest common divisor and a least common multiple equals the product of the two
original polynomials:

isequal(a*b,gld(a,b)*llm(a,b))   

ans =

     1   

Next consider polynomial matrices A s( ) , B s( ) and C s( )  of compatible sizes such that
A s B s C s( ) ( ) ( )= . We say that B s( )  is a left divisor of A s( ) , or A s( )  is a right multiple of
B s( ) . Take for instance

B = [1 s; 1+s 1-s], C = [2*s 1; 0 1], A = B*C

B =

     1         s

     1 + s     1 - s

C =

     2s     1

     0      1

A =

     2s            1 + s

     2s + 2s^2     2   

As B s( )  is a left divisor of A s( ) , the matrix left division

B\A

can be done and results in the matrix

ans =

     2s     1

Matrix divisors
and multiples

Matrix division
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     0      1   

Of course, the left division by B s( )  fails if B s( )  is not a left divisor

B\C

Constant polynomial matrix: 2-by-2

ans =

     NaN     NaN

     NaN     NaN  

This includes the case that it is a divisor but from the other ("wrong") side

A/B   

Constant polynomial matrix: 2-by-2

ans =

     NaN     NaN

     NaN     NaN   

On the other hand, a polynomial matrix N s( )  can be divided by any compatible
nonsingular square matrix D s( )  with a remainder, resulting in a matrix quotient
Q s( )  and a matrix remainder R s( )  such that

 N s D s Q s R s( ) ( ) ( ) ( )= +

If it is required that the rational matrix D s R s-1 ( ) ( )  is strictly proper then the
division is unique. Thus, dividing a random matrix

N = prand(4,2,3,'ent','int')

N =

     0           -3 + 11s                        -1 + s

     5 - 4s^3     1 - 7s + 4s^2 + 8s^3 - 3s^4     4 + 6s   

from the left by a random square matrix

D = prand(3,2,'ent','int')

Matrix division
with remainder
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D =

    -7                 3 - 2s + 3s^2

     4 + 4s + 6s^2     0   

results in

[Q,R] = ldiv(N,D)

Q =

     0.44 - 0.67s    -0.11 + 1.7s - 0.5s^2     0

     0               -1.2                      0

R =

     3.1 - 4.7s     -0.28 + 20s    -1 + s

     3.2 + 0.89s     1.4 - 13s      4 + 6s   

Indeed,

deg(det(D))   

ans =

     4   

while

deg(adj(D)*R,'ent')   

ans =

     3     3     3

     3     3     3   

so that each entry of the rational matrix D s R s D R D- =1 ( ) ( ) (adj ) / det  is strictly
proper.

If a polynomial matrix G s( )  is a left divisor of both A s( )  and B s( )  then G s( )  is called
a common left divisor of A s( )  and B s( ) . If, furthermore, G s( )  is a right multiple of
every common left divisor of A s( )  and B s( )   then it is a greatest common left divisor of

Greatest
common left
divisor
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A s( )  and B s( ) . If the only common left divisors of A s( )  and B s( )  are unimodular
matrices then the polynomial matrices A s( )  and B s( )  are left coprime. To compute a
greatest common left divisor of

A = [1+s-s^2, 2*s + s^2;1-s^2, 1+2*s+s^2]   

A =

     1 + s - s^2     2s + s^2

     1 - s^2         1 + 2s + s^2   

and

B = [2*s, 1+s^2; 1+s, s+s^2]   

B =

     2s        1 + s^2

       1 + s     s + s^2   

type

gld(A,B)

ans =

     0         1

       1 + s     0   

Similarly, the polynomial matrices

C = [1+s, 1; 1-s 0], D = [1-s, 1; 1 1]

C =

     1 + s     1

     1 - s     0

D =

     1 - s     1

     1         1   
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are left coprime as

gld(D,C)

Constant polynomial matrix: 2-by-2

ans =

     1     0

     0     1   

is obviously unimodular. You may also directly check

isprime([C,D])

ans =

     1   

As the two polynomial matrices C and D are left coprime there exist other two other
polynomial matrices E and F that satisfy

CE DF I+ =

They may be computed according to

[E,F] = axbyc(C,D,eye(2))

Constant polynomial matrix: 2-by-2

E =

     0     0

     1    -1

Constant polynomial matrix: 2-by-2

F =

     0     0

       0     1   

If a polynomial matrix M s( )  is a right multiple of both A s( )  and B s( )  then M s( )  is
called a common right multiple of A s( )  and B s( ) . If, furthermore, M s( )  is a left

Least common
right multiple
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divisor of every common right multiple of A s( )  and B s( )  then M s( )  is a least common
right multiple of A s( )  and B s( ) .

M = lrm(A,B)   

M =

     1 + 4s + 3s^2    -2 - 9s - 2s^2 + s^3

     2 + 4s + 2s^2    -5 - 7s - s^2 + s^3   

which is verified by

A\M, B\M

ans =

     1 + s    -2 - s

     1 + s    -3

ans =

     2 + s    -5

     1        -2 + s   

The dual concepts of right divisors, left multiples, common right divisors, greatest
common right divisors, common left multiples, and least common left multiples are
similarly defined and computed.

Reduced and canonical forms

Suppose that we have a polynomial matrix

P = [1+s^2, -2; s-1 1]

P =

     1 + s^2    -2

    -1 + s       1

of degree

Dual concepts
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deg(P)   

ans =

     2

with leading coefficient matrix

Pl = P{2}   

Pl =

     1     0

     0     0  

Besides the (overall) degree of P we may also consider its row degrees

deg(P,'row')   

ans =

     2

     1   

and column degrees

deg(P,'col')   

ans =

     2     0   

Associated with the row degrees is the leading row coefficient matrix

lcoef(P,'row')   

ans =

     1     0

     1     0   

and associated with the column degrees is the leading column coefficient matrix

lcoef(P,'col')

Row degrees
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ans =

     1    -2

     0     1   

A polynomial matrix is row reducedif its leading row coefficient matrix has full row
rank. Similarly, it is column reduced if its leading column coefficient matrix has full
column rank. The matrix P is definitely not row reduced

isfullrank(lcoef(P,'row'))   

ans =

     0   

but it is column reduced

isfullrank(lcoef(P,'col'))

ans =

     1   

Any polynomial matrix with full row rank may be transformed into row reduced form
by pre-multiplying it by a suitable unimodular matrix. To compute a row reduced
form of P, call

P_row_reduced = rowred(P)   

P_row_reduced =

     1 + s    -2 - s

    -1 + s     1   

Indeed, the row rank of

lcoef(P_row_reduced,'row')   

ans =

     1    -1

     1     0   

Row and
column reduced
matrices

Row reduced
form
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is full.

There are several special forms of a polynomial matrix that can be achieved by pre-
and/or post-multiplying it by suitable unimodular matrix. These operations preserve
many important properties and indeed serve to make these visible.

Thus, a lower-left triangular form T s( )  of A s( )  resulting from column operations
T s A s U s( ) ( ) ( )=  can be computed by the macro tri:

A = [s^2 0 1; 0 s^2 1+s]

A =

     s^2     0       1

     0       s^2     1 + s

T = tri(A)

T =

    -1         0          0

    -1 - s    -1.2s^2     0

The corresponding unimodular matrix is returned by

[T,U] = tri(A); U

U =

     0     0.29             0.5

     0    -0.87 + 0.29s     0.5 + 0.5s

    -1    -0.29s^2         -0.5s^2    

If A s( )  has not full row rank then T s( )  is in staircase form. Similarly, an upper-right
triangular (row staircase) form is achieved by row (unimodular) operations. It results
from the call tri(A,'row').

If B s( ) is a square polynomial matrix with nonsingular constant term then another
upper-triangular form may be obtained by the overloaded macro lu:

B = [ 1 1 s; s+1 0 s; 1-s s 2+s]

Triangular and
staircase form

Another
triangular form
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B =

     1         1     s

     1 + s     0     s

     1 - s     s     2 + s

[V,T] = lu(B)

V =

     1         0.33s                  0.11s

     1 + s     1 + 1.3s + 0.33s^2     0.44s + 0.11s^2

     1 - s     1 - 1.7s - 0.33s^2     1 - 0.56s - 0.11s^2

T =

     1     1 + 0.33s     0.78s + 0.11s^3

     0    -1            -0.67s - s^2 + 0.33s^3

     0     0             2 + 2s + 2s^2 - s^3

The triangular forms described above are by no means unique. A canonical triangular
form is called the Hermite form. An n m¥  polynomial matrix A s( )  of rank r  is in
column Hermite form if it has the following properties:

§ it is lower triangular

§ the diagonal entries are all monic

§ each diagonal entry has higher degree than any entry on its left

§ in particular, if the diagonal element is constant then all off-diagonal elements in
the same row are zero

§ if n r>  then the last n r-  columns are zero

The nomenclature in the literature is not consistent. Some authors (in particular
Kailath, 1980) refer to this as the row Hermite form. The polynomial matrix A is in
row Hermite form if it is the transpose of a matrix in column Hermite form. The
command

Hermite form
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H = hermite(A)

returns the column Hermite form

H =

     1         0       0

     1 + s     s^2     0  

while the call

[H,U] = hermite(A); U

U =

     0    -0.25             0.5

     0     0.75 - 0.25s     0.5 + 0.5s

     1     0.25s^2         -0.5s^2

provides a unimodular reduction matrix U such that H s A s U s( ) ( ) ( )= .

Yet another canonical form is called the (Popov) echelon form. A polynomial matrix E
is in column echelon form (or Popov form) if it has the following properties:

§ it is column reduced with its column degrees arranged in ascending order

§ for each column there is a so-called pivot index i  such that the degree of the i -th
entry in this column equals the column degree, and the i-th entry is the lowest
entry in this column with this degree

§ the pivot indexes are arranged to be increasing

§ each pivot entry is monic and has the highest degree in its row

A square matrix in column echelon form is both column and row reduced

Given a square and column-reduced polynomial matrix D s( )  the command

[E,U] = echelon(D)

computes the column echelon form E s( )  of D s( ) . The unimodular matrix U s( )

satisfies E s D s U s( ) ( ) ( )= .

Echelon form
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By way of example, consider the polynomial matrix

D = [ -3*s s+2; 1-s 1];

To find its column echelon form and the associated unimodular matrix, type

[E,U] = echelon(D)   

MATLAB returns

E =

     2 + s    -6

     1        -4 + s

Constant polynomial matrix: 2-by-2

U =

     0    -1

     1    -3

The ultimate, most structured canonical form for a polynomial matrix is its Smith
form. A polynomial matrix A s( )  of rank r  may be reduced to its Smith form
S s U s A s V s( ) ( ) ( ) ( )=  by pre- and post- multiplication by unimodular matrices U s( )  and
V s( ) , respectively. The Smith form looks like this:

S s
S sr( )

( )
=
L
NM

O
QP

0

0 0

with the diagonal submatrix

 S s a s a s a sr r( ) diag( ( ), ( ), , ( ))= 1 2 L

The entries a s a s a sr1 ( ), ( ), , ( )2 L  are monic polynomials such that a s1 ( )  divides a si+ 1 ( )

for i r= -1 2 1, , ,K .  The Smith form is particularly useful for theoretical
considerations as it reveals many important properties of the matrix. Its practical
use, however is limited because it is quite sensitive to small parameter perturbations.
The computation of the Smith form becomes numerically troublesome as soon as the
matrix size and degree become larger. The Polynomial Toolbox offers a choice of three
different algorithms to achieve the Smith form, all programmed in macro smith.

Smith form
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For larger examples, a manual change of tolerance may be necessary. To compute the
Smith form of a simple matrix

A=[1+s, 0, s+s^2; 0, s+2, 2*s+s^2]

A =

         1 + s     0         s + s^2

         0         2 + s     2s + s^2

simply call

smith(A)

ans =

         1     0                0

         0     2 + 3s + s^2     0

The polynomials a s a s a sr1 ( ), ( ), , ( )2 L  that appear in the Smith form are uniquely
determined and are called the invariant polynomials of A s( ) . They may be retrieved
by typing

diag(smith(A))

ans =

     1

     2 + 3s + s^2

Polynomial matrix equations

The simplest type of linear scalar polynomial equation — called Diophantine
equation after by the Alexandrian mathematician Diophantos (A.D. 275) —  is

a s x s b s y s c s( ) ( ) ( ) ( ) ( )+ =

The polynomials a s( ) , b s( )  and c s( )  are given while the polynomials x s( )  and y s( )  are
unknown. The equation is solvable if and only if the greatest common divisor of a s( )

and b s( )  divides c s( ) . This implies that with a s( )  and b s( )  coprime the equation is
solvable for any right hand side polynomial, including c s( ) = 1 .

Invariant
polynomials

Diophantine
equations
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The Diophantine equation possesses infinitely many solutions whenever it is
solvable. If ¢x s( ) ,  ¢y s( )  is any (particular) solution then the general solution of the
Diophantine equation is

x s x s b s t s

y s y s a s t s

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

= ¢ +
= ¢ -

Here t s( )  is an arbitrary polynomial (the parameter) and a s( ) , b s( )   are coprime
polynomials such that

b s

a s

b s

a s

( )

( )

( )

( )
=

If the polynomials a s( )  and b s( )  themselves are coprime then one can naturally take
a s a s( ) ( )=  and b s b s( ) ( )= .

Among all the solutions of Diophantine equation there exists a unique solution pair
x s( ) , y s( )  characterized by

deg ( ) deg ( )x s b s< .

There is another (generally different) solution pair characterized by

deg ( ) deg ( )y s a s< .

The two special solution pairs coincide only if

deg ( ) deg ( ) deg ( )a s b s c s+ ≥ .

The Polynomial Toolbox offers two basic solvers that may be used for scalar and
matrix Diophantine equations. They are suitably named axbyc and xaybc. For
example, consider the simple polynomials

a = 1+s+s^2; b = 1-s; c = 3+3*s;

When typing

[x,y] = axbyc(a,b,c)

Constant polynomial matrix: 1-by-1

x =

     2
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y =

     1 + 2s

MATLAB returns the solution pair x s y s s( ), ( ) ,b g b g= +2 1 2  with minimal overall degree.
The alternative call

[x,y,f,g] = axbyc(a,b,c)

Constant polynomial matrix: 1-by-1

x =

     2

y =

     1 + 2s

f =

    -1 + s

g =

     1 + s + s^2

retrieves the complete general solution in the form x s f s t s y s g s t s( ) ( ) ( ), ( ) ( ) ( )+ +b g  with
an arbitrary polynomial parameter t s( ) .

To investigate the case of different minimal degree solutions, consider a right hand
side of higher degree

c = 15+15*s^4;

As before, the call

[x1,y1] = axbyc(a,b,c)

x1 =

     8 - 13s + 15s^2

y1 =

     7 + 12s + 2s^2
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results in the solution of minimal overall degree (in this case deg degx y1 1 2= = ).

A slightly different command

[x2,y2] = axbyc(a,b,c,'minx')

Constant polynomial matrix: 1-by-1

x2 =

     10

y2 =

     5 - 5s - 15s^2 - 15s^3

returns another solution with the minimal degree of the first unknown. Finally,
typing

[x2,y2] = axbyc(a,b,c,'miny')

x2 =

     10 - 15s + 15s^2

y2 =

     5 + 10s

produces the solution of minimal degree in the second unknown.

A Diophantine equation with 1 on its right hand side is called a Bézout equation. It
may look like

a s x s b s y s( ) ( ) ( ) ( )+ = 1

with a s( ) , b s( )  given and x s( ) , y s( )  unknown.

In the matrix case, the polynomial equation becomes a polynomial matrix equation.
The basic matrix polynomial (or polynomial matrix) equations are

A s X s B s( ) ( ) ( )=

and

X s A s B s( ) ( ) ( )=

Bézout
equations

Matrix
polynomial
equations
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or even

A s X s B s C s( ) ( ) ( ) ( )=

A s( ) , B s( )  and, if applicable, C s( )  are given while X s( )  is unknown. The Polynomial
Toolbox functions to solve these equations are conveniently named axb, xab, and
axbc. Hence, given the polynomial matrices

A= [1 s 1+s; s-1 1 0]; B = [s 0; 0 1];

the call

X0 = axb(A,B)

X0 =

     1        -1

     1 - s     s

     -1 + s     1 – s

solves the first equation and returns its solution of minimal overall degree. Typing

[X0,K] = axb(A,B); K

 K =

     1 + s

     1 - s^2

    -1 - s + s^2

also computes the right null-space of A so that all the solutions to A s X s B s( ) ( ) ( )=
may easily be parametrized as

 X s X s K s T s( ) ( ) ( ) ( )= +0

T s( )  is an arbitrary polynomial matrix of compatible size. The other equations are
handled similarly.

In systems and control several special forms of polynomial matrix equations are
frequently encountered, in particular the one-sided equations

A s X s B s Y s C s( ) ( ) ( ) ( ) ( )+ =

One-sided
equations
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and

X s A s Y s B s C s( ) ( ) ( ) ( ) ( )+ =

Also the two-sided equations

A s X s Y s B s C s( ) ( ) ( ) ( ) ( )+ =

and

X s A s B s Y s C s( ) ( ) ( ) ( ) ( )+ =

are common. A s B s( ), ( )  and C s( )  are always given while X s( )  and Y s( )  are to be
computed. A s( )  is typically square invertible.

The solutions of the one- and two-sided equations may be found with the help of the
Polynomial Toolbox macros axbyc, xaybc, and axybc . Thus, for the matrices

A= [1 s; 1+s 0]; B = [s 1; 1 s]; C = [1 0; 0 1];

the call

[X,Y] = axbyc(A,B,C)

returns

    X =

     0.25 - 0.5s     0.5

     0.25 + 0.5s    -0.5

 Y =

     -0.25 - 0.5s     0.5

      0.75 + 0.5s    -0.5

Various other scalar and matrix polynomial equations may be solved by directly
applying appropriate solvers programmed in the Polynomial Toolbox, such as the
equation

A s X s X s A s B s( ) ( ) ( ) ( ) ( )* *+ =

Table 2 lists all available polynomial matrix equation solvers.

Two-sided
equations
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Table 2. Equation solvers

Equation Name of the routine

A X B= axb

AXB C= axbc

AX BY C+ = axbyc

A X X A B* *+ = axxab

A X Y A B* *+ = axyab

AX YB C+ = axybc

X A A X B* *+ = xaaxb

X A B= xab

XA YB C+ = xaybc

Factorizations

Besides linear equations special quadratic equations in scalar and matrix
polynomials are encountered in various engineering fields.  One of them is the
polynomial spectral factorization

A s X s JX s( ) ( ) ( )= *

and the spectral co-factorization

A s X s JX s( ) ( ) ( )= * .

In either case, the given polynomial matrix A s( )  satisfies A s A s( ) ( )= *  (we say it is
para-Hermitian symmetric) and the unknown X s( )  is to be stable. The case of A s( )

positive definite on the stability boundary results in J I= .

Spectral factorization with J = I is the main tool to design LQ and LQG controllers as
well as Kalman filters. On the other hand, if A s( )  is indefinite on the stability
boundary then J = - - -diag +1, + , , + , , ,1 1 1 1 1K Kl q  . This is the famous J -spectral
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factorization problem, which is an important tool for robust control and filter design
based on H •  norms. The Polynomial Toolbox provides two macros called spf and
spcof to handle spectral factorization and co-factorization, respectively.

By way of illustration consider the para-Hermitian matrix

A =

     34 - 56s^2          -13 - 22s + 60s^2     36 + 67s

    -13 + 22s + 60s^2     46 - 1e+002s^2      -42 - 26s + 38s^2

     36 - 67s            -42 + 26s + 38s^2     59 - 42s^2

Its spectral factorization follows by typing

[X,J] = spf(A)

X =

     2.1 + 0.42s     5.2 + 0.39s    -2 + 0.35s

    -5.5 + 4s        4.3 + 0.64s    -7.4 - 5.5s

     0.16 + 6.3s    -0.31 - 10s     -0.86 + 3.5s

J =

     1     0     0

     0     1     0

     0     0     1

while the spectral co-factorization of A is computed via

[Xcof,J] = spcof(A)

Xcof =

     2.7 + 0.42s     4.8 + 4s         2 + 6.3s

    -1.6 + 0.39s     0.93 + 0.64s    -6.5 - 10s

     4.3 + 0.35s     2.7 - 5.5s       5.8 + 3.5s

J =
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     1     0     0

     0     1     0

     0     0     1

The resulting J reveals that the given matrix A is positive-definite on the imaginary
axis. On the other hand, the following matrix is indefinite

B =

     5          -6 - 18s       -8

    -6 + 18s    -41 + 81s^2    -22 - 18s

    -8          -22 + 18s      -13

Its spectral factorization follows as

[Xf,J] = spf(B)

Xf =

     3.3     2.9 - 0.92s    -1.6

     1.8     6.6 + 0.44s     3.4

     1.6     2.5 + 9s       -2

J =

     1     0     0

     0    -1     0

     0     0    -1

or

[Xcof,J] = spcof(B)

Xcof =

     3.3            -1.8             1.6

    -1.9 + 0.92s    -4.4 + 0.44s    -5 - 9s
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    -1.6            -3.4            -2

J =

     1     0     0

     0    -1     0

     0     0    -1

Matrix pencil routines

Matrix pencils are polynomial matrices of degree 1. They arise in the study of
continuous- and discrete-time linear time-invariant state space systems given by

&( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t D u t

= +
= +

        
x t Ax t Bu t

y t Cx t D u t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1

and continuous- and discrete-time descriptor systems given by

E x t Ax t Bu t

y t Cx t D u t

&( ) ( ) ( )

( ) ( ) ( )

= +
= +

       
Ex t Ax t Bu t

y t Cx t D u t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1

The transfer matrix of the descriptor system is

H s C sE A B D( ) ( )= - +-1

in the continuous-time case, and

H s C zE A B D( ) ( )= - +-1

in the discrete-time case. The polynomial matrices

sE A- ,   zE A-

that occur in these expressions are matrix pencils. In the state space case they reduce
to the simpler forms sI A-  and zI A- .

A nonsingular square real matrix pencil P s( )  may be transformed to its Kronecker
canonical form

  C s Q P s Z
a sI

I se
( ) ( )= =

+
+

L
NM

O
QP

0

0

Transformation
to Kronecker
canonical form
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Q and Z are constant orthogonal matrices, a is a constant matrix whose eigenvalues
are the negatives of the roots of the pencil, and e is a nilpotent constant matrix. (That
is, there exists a nonnegative integer k such that e i = 0  for i k≥ . The integer k is
called the nilpotency of e.)

This transformation is very useful for the analysis of descriptor systems because it
separates the finite and infinite roots of the pencil and, hence, the corresponding
modes of the system.

By way of example we consider the descriptor system

1 0 0

0 0 1

0 0 0

1 0 0

0 1 0

0 0 1

1

0

1

1 1 0 2

L

N
MMM

O

Q
PPP

=
-L

N
MMM

O

Q
PPP

+
L

N
MMM

O

Q
PPP

= - +
E A B

C D

x x u

y x u

1 24 34 1 24 34

1 24 34 {

&

2

The system is defined by the matrices

A = [ -1 0 0; 0 1 0; 0 0 1 ];

B = [ 1; 0; 1 ];

C = [ 1 -1 0 ];

D = 2;

E = [ 1 0 0; 0 0 1; 0 0 0 ];    

We compute the canonical form of the pencil sE A-  by typing

c = pencan(s*E-A)   

c =

     1 + s     0     0

     0         1    -s

     0         0     1   

Inspection shows that a = 1 has dimensions 1 1¥  and that e is the 2 2¥  nilpotent
matrix
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e =
-L

NM
O
QP

0 1

0 0

The descriptor system has a finite pole at -1  and two infinite poles.

A para-Hermitian real pencil P s sE A( ) = + , with E skew-symmetric and A
symmetric, may — under the assumption that it has no roots on the imaginary axis
—  be transformed into its “Clements” form (Clements, 1993) according to

C s U P s U

sE A

A sE A

sE A sE A sE A

T

T T T T

( ) ( )= =
+
+

- + - + +

L

N
MMM

O

Q
PPP

0 0

0

1 1

2 3 3

1 1 3 3 4 3

The constant matrix U is orthogonal and the finite roots of the pencil sE A1 1+  all
have negative real parts. This transformation is needed for the solution of various
spectral factorization problems that arise in the solution of H 2  and H •  optimization
problems for descriptor systems.

Let the para-Hermitian pencil P  be defined as

P s

s

s
( )

.

. .
=

-
- -
- -

L

N

MMMM

O

Q

PPPP

100 0 01 0

0 01 0 01 0 1

0 1 0

0 1 0 0

It Clements form follows by typing

P = [100 -0.01 s 0; -0.01 -0.01 0 1; -s 0 -1 0; 0 1 0 0];

C = pzer(clements(P))

C =

0          0                      0         -10 + s

0         -1                      0         -3.5e-005 - 0.0007s

0          0                      1         -0.014 + 0.00071s

-10 - s    -3.5e-005 + 0.0007s    -0.014 - 0.00071s     99

The pzer function is included in the command to clear small coefficients in the
result.

Transformation
to Clements
form
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When working with matrix pencils the two-sided matrix pencil equation

A s X Y B s C s( ) ( ) ( )+ =

is sometimes encountered. A and B are square matrix pencils and C  is a rectangular
pencil with as many rows as A and as many columns as B. If A and B have no
common roots (including roots at infinity) then the equation has a unique solution
pair X, Y with both X and Y a constant matrix.

By way of example, let

A = s+1;

B = [ s 0

      1 2];

C = [ 3 4 ];   

Then

[X,Y] = plyap(A,B,C)   

gives the solution

X =

     1     0

Y =

    -1     2

Numerical routines

The Polynomial Toolbox provides several auxiliary routines for ordinary matrices
that may come in handy for other applications. We review two of them.

The standard MATLAB routine qz allows the simultaneous transformation

Q A Z a Q B Z b= =,

Pencil
Lyapunov
equations

qzord
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of two square matrices A and B into upper triangular matrices a and b. Q and Z are
unitary. The ratios a bii ii/ ,  i = 1, 2, L, of the diagonal entries of a and b are the
generalized eigenvalues of the matrix pair (A, B).

The Polynomial Toolbox routine qzord additionally orders the diagonal ratios a bii ii/

according to the options 'partial' (default) and 'full' . With the option
'partial' the finite eigenvalues come first and are followed by the infinite
eigenvalues. With the option 'full' the generalized eigenvalues are ordered
according to increasing real parts with the infinite generalized eigenvalues last.

Consult the manual page for qzord for examples.

The Polynomial Toolbox routine schurst extends the standard MATLAB  routine
schur. The routine schur transforms a constant matrix into upper triangular form.
The Toolbox routine schurst additionally orders the diagonal entries so that the
diagonal entries with negative real part precede those with nonnegative real part.
See the manual page for schurst for an example.

Visualization

The Polynomial Toolbox has several graphical routines.

The macros pplot and pplot3 provide two- and three-dimensional visualizations of
polynomial matrices. They are described in Chapter 9, Reference, and also on their
manual pages.

The macro zpplot plots the zeros of polynomial matrices and the zeros and poles of
polynomial matrix fractions. For examples see its manual page.

The routines khplot and ptoplot are graphical routines for parametric robustness
analysis. They are described in Chapter 6, Robust control with parametric
uncertainties, and of course on their manual pages.

schurst

pplot, pplot3

zpplot

khplot, ptoplot
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 3 The Polynomial Matrix Editor

Introduction

The Polynomial Matrix Editor (PME) is recommended for creating and editing
polynomial and standard MATLAB matrices of medium to large size, say from about
4 4¥  to 30 35¥ . Matrices of smaller size can easily be handled in the MATLAB

command window with the help of monomial functions, overloaded concatenation,
and various applications of subscripting and subassigning. On the other hand,
opening a matrix larger than 30 35¥  in the PME results in a window that is difficult
to read.

Quick start

Type pme to open the main window called Polynomial Matrix Editor. This window
displays all polynomial matrices (POL objects) and all standard MATLAB matrices (2-
dimensional DOUBLE arrays) that exist in the main MATLAB workspace. It also
allows you to create a new polynomial or standard MATLAB matrix. In the Polynomial
Matrix Editor window you can

• create a new polynomial matrix, by typing its name and size in the first (editable)
line and then clicking the Open button

• modify an existing polynomial matrix while retaining its size and other
properties: To do this just find the matrix name in the list and then double click
the particular row

• modify an existing polynomial matrix to a large extent (for instance by changing
also its name, size, variable symbol, etc.): To do this, first find the matrix name in
the list and then click on the corresponding row to move it up to the editable row.
Next type in the new required properties and finally click Open

Each of these actions opens another window called Matrix Pad that serves for editing
the particular matrix.
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In the Matrix Pad window the matrix entries are displayed as boxes. If an entry is too
long so that it cannot be completely displayed then the corresponding box takes a
slightly different color (usually more pinkish.)

To edit an entry just click on its box. The box becomes editable and large enough to
display its entire content. You can type into the box anything that complies with the
MATLAB syntax and that results in a scalar polynomial or constant. Of course you can
use existing MATLAB variables, functions, etc. The program is even more intelligent
and handles some notation going beyond the MATLAB syntax. For example, you can
drop the * (times) operator between a coefficient and the related polynomial symbol
(provided that the coefficient comes first). Thus, you can type 2s as well as 2*s.

To complete editing the entry push the Enter key or close the box by using the mouse.
If you have entered an expression that cannot be processed then an error message is
reported and the original box content is recovered.

To bring the newly created or modified matrix into the MATLAB workspace finally
click Save or Save As.

Main window

The main Polynomial Matrix Editor window is shown in Fig. 2.

The main window contains the following buttons:

• Open Clicking the Open button opens a new Matrix Pad for the matrix specified
by the first (editable) line.  At most four matrix pads can be open at the same
time.

• Refresh Clicking the Refresh button updates the list of matrices to reflect
changes in the workspace since opening the PME or since it was last refreshed.

• Close  Clicking the Close button terminates the current PME session.

The main PME window offers the following menus:

• Menu List Using the menu List you can set the type of matrices listed in the main
window. They may be polynomial matrices (POL objects) – default –  or standard
MATLAB matrices or both at the same time.

• Menu Symbol Using the menu Symbol you can choose the symbol (such as s,z,...)
that is by default offered for the 'New' matrix item of the list.

Main window
buttons

Main window
menus
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List menu to
control what
matrices are

displayed

E d itable row to
create or modify

properties

List of existing
matrices

Button to open
new matrix pad

S ymbol menu to
change default

symbol

P roperties of
edited matrix

Button to close
P M E

Fig. 2. Main window of the Polynomial Matrix Editor

Matrix Pad window

To edit a matrix use one of the ways described above to open a Matrix Pad window for
it. This window is show in Fig. 3.

The Matrix Pad window consists of boxes for the entries of the polynomial matrix. If
some entry is too long and cannot be completely displayed in the particular box then
its box takes a slightly different color.

To edit an entry you can click on its box. The box pops up, becomes editable and large
enough to display its whole content. You can type into the box anything that complies
with the MATLAB syntax and results in a scalar polynomial or constant. Of course,
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you can use all existing MATLAB variables, functions, etc. The editor is even a little
more intelligent: it handles some notation going beyond the MATLAB syntax. For
example, you can drop the * (times) operator between a coefficient and the related
polynomial symbol (provided that the coefficient comes first). Thus,  you can type 2s
as well as 2*s. Experiment a little to learn more.

When editing is completed push the Enter key on your keyboard or close the box by
mouse. If you have entered an expression that cannot be processed then an error
message is appears and the original content of the box is retrieved.

When the matrix is ready bring it into the MATLAB workspace by clicking either the
Save or the Save As button.

The following buttons control the Matrix Pad window:

• Save button: Clicking  Save copies the Matrix Pad contents into the MATLAB

workspace.

• Save As button: Clicking Save As copies the matrix from Matrix Pad into the
MATLAB workspace under another name.

• Browse button: Clicking Browse moves the cursor to the main window (the same
as directly clicking there).

Close Button: Clicking Close closes the Matrix Pad window.

The Matrix Pad window consists of boxes for the entries of the polynomial matrix. If
some entry is too long and cannot be completely displayed then its box takes a
slightly different color.

To edit an entry you can click on its box. The box pops up, becomes editable and large
enough to display its whole content. You can type into the box anything that complies
with the MATLAB syntax and results in a scalar polynomial or constant. Of course,
you can use all existing MATLAB variables, functions, etc. The editor is even a little
more intelligent: it handles some notation going beyond the MATLAB syntax. For
example, you can drop the * (times) operator between a coefficient and the related
polynomial symbol (provided that the coefficient comes first). Thus,  you can type 2s
as well as 2*s. Experiment a little to learn more.

When editing is completed push the Enter key on your keyboard or close the box by
mouse. If you have entered an expression that cannot be processed then an error
message is appears and the original content of the box is retrieved.

Matrix Pad
buttons
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When the matrix is ready bring it into the MATLAB workspace by clicking either the
Save or the Save As button.

Box with
incompletely

displayed
contents

O pened editable
box

Buttons to save
the matrix

Name of edited
matrix

P roperties of
edited matrix

Button to close
M a trix Pad

Button to
activate the

main window

Box with
completely
displayed
contents

Fig. 3. Matrix Pad with an opened editable box
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 4 Polynomial matrix fractions and
LTI systems

Introduction

Linear time-invariant systems are a very important class of models for control. Even
though the “real world” is without doubt thoroughly nonlinear, linear models provide
an extraordinarily useful tool for the study of dynamical systems.

A very well know model for linear time-invariant systems is of course the familiar
state space description, which for continuous-time systems takes the form

&( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t D u t

= +
= +

with u the input, y the output, and x the state variable, and where the time t is a
continuous variable. All these signals may be vector-valued, and A, B, C and D are
constant matrices of appropriate dimensions.

Discrete-time state space models are similarly described by equations of the form

x t Ax t Bu t

y t Cx t D u t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1

where now time t assumes values on a discrete set, typically the integers.

State space models often arise from first principle modelling. Even more naturally
first principle modelling results in sets of first-order differential equations together
with sets of algebraic equations in the system variables. This leads to descriptor
representations of the form

E x t Ax t Bu t

y t Cx t D u t

&( ) ( ) ( )

( ) ( ) ( )

= +
= +

where the matrix E is not necessarily invertible. Discrete-time descriptor models
similarly have the form
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Ex t Ax t Bu t

y t Cx t D u t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1

Polynomial matrix fractions

For many applications the internal state or pseudo state x is not of interest, and only
the external input and output variables u and y are relevant. It is not difficult to see
that elimination of the internal variables by repeated differentiation and substitution
in the continuous-time case leads to sets of differential equations in the output y and
the input  u that can be arranged in the form

Q
d

dt
y t P

d

dt
u t( ) ( ) ( ) ( )=

Q and P are polynomial matrices. For consistency Q needs to be square nonsingular.

Assuming zero initial conditions on all variables Laplace transformation of the
differential equations results in the set of algebraic equations

Q s y s P s u s( ) $ ( ) ( ) $( )=

The circumflex denotes Laplace transformation. Solving for the output we have

$( ) ( ) ( ) $( )y s Q s P s u s= -1

This is where the nonsingularity of Q is needed. We see that the transfer matrix H of
the system is the polynomial matrix fraction

H Q P= -1

In the familiar single-input single-output case the matrix fraction reduces to a
fraction of scalar polynomials P and Q. In the multi-input multi-output case there are
many advantages in retaining the polynomial matrix fraction, without reducing it to
a matrix of scalar fractions. The Polynomial Toolbox provides a comprehensive set of
tools to work with such fractions.

State space systems and left polynomial matrix fractions

The Polynomial Toolbox command

[P,Q] = ss2lmf(A,B,C,D)
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converts the state space representation

&( ) ( ) ( )

( ) ( ) ( )

x t Ax t Bu t

y t Cx t D u t

= +
= +

to the input-output representation

Q
d

dt
y t P

d

dt
u t( ) ( ) ( ) ( )=

Q and P are left coprime and the transfer matrix Q s P s-1 ( ) ( )  equals the transfer
matrix C sI A B D( )- +-1  of the state space system. Q is row reduced and its row
degrees are the observability indices of the state space system.

The state space representation and the input-output representation are equivalent —
in the sense that they define the same sets of input-output pairs (u, y) —  only if the
state space system is controllable.

We consider the state space system

&x x

y x u

= -
= +

Obviously, the system is observable but not controllable. We enter its data as

A = 1; B = 0; C = 1; D = 1;

Conversion to a left coprime fractional representation yields

[Pl,Ql] = ss2lmf(A,B,C,D)

Constant polynomial matrix: 1-by-1

Pl =

     1

Constant polynomial matrix: 1-by-1

Ql =

     1   

The polynomials Pl and Ql are obviously coprime. The input-output model
corresponding to the left fraction Q Pl l

-1  is

Example

ss2lmf
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y u=

This model is not equivalent to the state space system because its output shows no
trace of the uncontrollable but observable mode corresponding to the pole –1. We may
obtain the correct model by first computing a left coprime fraction for C sI A( )- -1  and
then using this to find a non-coprime left fractional representation for the complete
system:

[pl,Ql] = ss2lmf(A,1,C,0)   

Constant polynomial matrix: 1-by-1

pl =

     1

Ql =

    -1 + s   

Pl = pl*B+Dl*D   

Pl =

    -1 + s   

We thus have the correct input-output representation

dy t

dt
y t

du t

dt
u t

( )
( )

( )
( )- = -

Left and right polynomial matrix fractions

Given a left polynomial fraction Q Pl l
-1  there always exists a right fraction P Qr r

-1  so
that

Q P P Ql l r r
- -=1 1

The polynomial matrices Pr  and Q r  are highly nonunique because if T is any square
nonsingular polynomial matrix of the same size as Q r  then

( )( )P T Q T P Qr r r r
- -=1 1
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The Polynomial Toolbox routine

[Pr,Qr] = lmf2rmf(Pl,Ql)

converts the left fraction Q Pl l
-1  to the right fraction P Qr r

-1  such that Pr  and Q r  are
coprime. Similarly, the routine

[Pl,Ql] = rmf2lmf(Pr,Qr)

converts a (not necessarily coprime) right fraction to a coprime left fraction.

Conversion of the left fraction Q Pl l
-1  of the previous example to the right fraction

P Qr r
-1  results in

[Rr,Qr] = lmf2rmf(Pl,Ql)   

Constant polynomial matrix: 1-by-1

Rr =

     1

Constant polynomial matrix: 1-by-1

Qr =

     1   

Right polynomial matrix fractions and system models

The command

[P,Q] = ss2rmf(A,B,C,D)

implements an algorithm to obtain the right coprime fractional representation
H P Q= -1 of the transfer matrix of a state space system. Q is column reduced and its
column degrees are the controllability indices of the state space system.

The right fraction representation

H P Q= -1

of a transfer matrix does not correspond to an input-output model. Rather, by writing

lmf2rmf,
rmf2lmf

Example

ss2rmf
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$( ) ( ) ( ) $( )y s P s Q s u s= -1

and defining the “internal” signal x  whose Laplace transform is $ ( ) ( ) $( )x s Q s u s= -1  we
see that the right fraction corresponds to the system described by the differential
equations

Q
d

dt
t u t

y t P
d

dt
u t

( ) ( ) ( )

( ) ( ) ( )

x =

=

The state space system is equivalent to this system only if the state space system is
observable.

Conversion to right polynomial fraction form of the state system of the previous
examples leads to

[Pr,Qr] = ss2rmf(A,B,C,D)   

Constant polynomial matrix: 1-by-1

Pr =

     1

Constant polynomial matrix: 1-by-1

Qr =

     1   

The transfer function H s( ) = 1  is of course correctly represented by this result but the
system defined by x = u , y = x  is not equivalent to the state space system. There is no
system of the form Q d dt u( / )x = , y P d dt= ( / )x  that is equivalent to a system with
uncontrollable but observable modes.

Polynomial matrix fraction to state space conversion

Naturally the Polynomial Toolbox has routines to obtain state space representations
from polynomial matrix fraction models. The command

[A,B,C,D] = lmf2ss(Pl,Ql)

Example

lmf2ss
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constructs the observer form realization (Kailath, 1980) corresponding to the left
fraction Q Pl l

-1 . The realization is always observable and controllable iff Pl and Ql are
left coprime. The input-output system Q d dt y t P d dt u tl l( / ) ( ) ( / ) ( )=  and the state space
system are equivalent.

Similarly, the command

[A,B,C,D] = rmf2ss(Pr,Qr)

results in the controller form realization. It is always controllable and observable iff
Pr and Qr are right coprime. The state space system is equivalent to the system
defined by the differential equations Q d dt t u tr ( / ) ( ) ( )x = , y t P d dt tr( ) ( / ) ( )= x .

Nonproper left or right polynomial matrix fractions do not have a state space
representation in the strict sense. This situation is accommodated in the Polynomial
Toolbox by allowing the “direct feedthrough term” in the output equation to contain
differentiators. Thus, state space systems have the general form

d

dt
x t Ax t Bu t

y t Cx t D
d

dt
u t

( ) ( ) ( )

( ) ( ) ( ) ( )

= +

= +

with D a polynomial matrix.

The command

[A,B,C,D] = lmf2ss(1+s,1+s)   

produces the observable but obviously uncontrollable realization

A =

    -1

B =

     0

C =

     1

D =

rmf2ss

Nonproper
fractions and
generalized
state space
models

Examples
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     1   

A nonproper left fraction such as

[A,B,C,D] = lmf2ss(1+s+s^2,2+s)   

yields

A =

    -2

B =

     3

C =

     1

D =

    -1 + s   

The corresponding state space system is

dx t

dt
x t u t

y t x t u t
du t

dt

( )
( ) ( )

( ) ( ) ( )
( )

= - +

= - +

2 3

The non-coprime right fraction defined by

[A,B,C,D] = rmf2ss(1+s,1+s)   

yields the unobservable but controllable system

A =

    -1

B =

     1

C =
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     0

D =

     1   

Continuous and discrete time systems

So far the discussion has been limited to continuous-time systems but the various
commands apply to discrete-time systems as well.

The continuous-time state space system

&( ) ( ) ( )x t Ax t Bu t= + , y t Cx t D u t( ) ( ) ( )= +

 has the transfer matrix

C sI A B D( )- +-1

Given the matrices A, B, C and D the routines ss2lmf and ss2rmf return the
polynomial matrices that define the required polynomial matrix fraction as
polynomial matrices in s provided that the global indeterminate variable is set to s.
If the global variable is p then the notation is again consistent with a continuous-time
environment.

Since the discrete-time system

x t Ax t Bu t y t Cx t D u t( ) ( ) ( ), ( ) ( ) ( )+ = + = +1

has the transfer matrix

C zI A B D( )- +-1

the results returned by ss2lmf and ss2rmf  fit in with a discrete-time environment
if the global variable is z. If the global variable is q¸ d or z -1  then the fraction is
automatically converted to a fraction in the correct variable.

Consider the discrete-time system defined by

A = 1; B = 1; C = 1; D = 0;   

Then

State space to
polynomial
matrix fraction

Example
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gensym('z'); [P,Q] = ss2lmf(A,B,C,D)   

results in

Constant polynomial matrix: 1-by-1

P =

     1

Q =

    -1 + z

while

gensym('z^-1'); [P,Q] = ss2lmf(A,B,C,D)   

correctly returns

P =

     z^-1

Q =

     1 - z^-1   

The commands that convert polynomial fractions to a state space representation infer
the nature of time from the argument of the input matrices. Thus,

[A,B,C,D] = lmf2ss(1,1+s)   

yields

A =

    -1

B =

     1

C =

     1

Polynomial
matrix fraction
to state space
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D =

     0   

but

[A,B,C,D] = lmf2ss(1,1+d)   

gives

A =

    -1

B =

    -1

C =

     1

D =

     1   

Also nonproper fractions are handled:

[A,B,C,D] = lmf2ss(1+z^2,2+z)   

yields

A =

    -2

B =

     5

C =

     1

D =

    -2 + z   



72 Polynomial matrix fractions and LTI systems

This defines the noncausal system

x t x t u t

y t x t u t u t

( ) ( ) ( )

( ) ( ) ( ) ( )

+ = - +
= - + +

1 2 5

2 1

On the other hand,

[A,B,C,D] = lmf2ss(1+d^2,2+d)   

returns the causal system given by

A =

   -0.5000    1.0000

         0         0

B =

   -0.5000

    1.0000

C =

    0.5000         0

D =

    0.5000   

Descriptor systems

Descriptor systems are described by equations of the form

E x t Ax t Bu t

y t Cx t D u t

&( ) ( ) ( )

( ) ( ) ( )

= +
= +

in continuous time, and

Ex t Ax t Bu t

y t Cx t D u t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1

in discrete time. In both cases the matrix E may be singular.



Descriptor systems 73

The Polynomial Toolbox for MATLAB

The commands dss2lmf, dss2rmf, lmf2dss and rmf2dss are available to convert
descriptor systems to left or right fractions, and conversely.

Descriptor systems may correspond to nonproper fractions, even if the “direct
feedthrough term” is non-derivative. Descriptor systems therefore always have
nonderivative direct feedthrough terms.

Moreover, the commands ss2dss and dss2ss allows to convert state space systems,
with or without derivative feedthrough term, to and from descriptor systems.

We may convert the nonproper left fraction given by

[A,B,C,D,E] = lmf2dss(1+s^2,1+s)   

to the descriptor system specified by

A =

    -1     0     0

     0     1     0

     0     0     1

B =

     2

     0

     1

C =

     1    -1     0

D =

    -1

E =

     1     0     0

     0     0     1

dss2lmf,
dss2rmf,
lmf2dss,
rmf2dss

ss2dss, dss2ss

Examples
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     0     0     0   

Internally the transformation follows by first converting to (generalized) state space
form

[A,B,C,D] = lmf2ss(1+s^2,1+s)

A =

    -1

B =

     2

C =

     1

D =

    -1 + s   

and from this to descriptor form

[A,B,C,D,E] = ss2dss(A,B,C,D)   

A =

    -1     0     0

     0     1     0

     0     0     1

B =

     2

     0

     1

C =

     1    -1     0
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D =

    -1

E =

     1     0     0

     0     0     1

     0     0     0   

Conversely

[P,Q] = dss2lmf(A,B,C,D,E)   

restores the matrix fraction

P =

     1 + s^2

Q =

     1 + s   

Of course all this also works in discrete time. We see that the discrete-time descriptor
system given by

A = [  0     1;   -1     0];

B = [  1;    1];

C = [  1     0 ];

D =    0;

E = [ 1     0;   0     1];   

corresponds to the nonproper fraction

gensym 'd'; [P,Q] = dss2lmf(A,B,C,D,E)   

P =

     d + d^2
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Q =

     1 + d^2   

or the proper fraction (in z)

gensym 'z'; [P,Q] = dss2lmf(A,B,C,D,E)

P =

     1 + z

Q =

     1 + z^2   

Polynomial matrix fractions, rational models, and transfer function models

In rational form the transfer matrix of a system with dimensions n m¥  is
represented by two n m¥  polynomial matrices num and den. The entries of num are
the numerators of the entries of the transfer matrix, and those of den the
denominators. The commands lmf2rat, rmf2rat, rat2lmf and rat2rmf provide
conversion of polynomial matrix fractions to and from this format.

The Control Toolbox of MATLAB calls this type of model the transfer function model. It
represents the numerator and denominator matrices num and den in Control Toolbox
format, that is, as cell arrays of polynomials in the standard MATLAB format. These
cell arrays are easily converted to and from Polynomial Toolbox format by the
commands pol2mat and mat2pol. Direct conversion of polynomial fractions to and
from numerator and denominator polynomial matrices is provided by the commands
lmf2tf, rmf2tf, tf2lmf, and tf2rmf.

We consider the 1 2¥  transfer matrix

H s
s

s

s
( ) =

+
+L

NM
O
QP

1

1

2
2

The numerator and denominator matrices are (in Polynomial Toolbox format)

num = [ 1  2+s ];  den = [ 1+s  s^2 ];   

The corresponding left and right coprime polynomial matrix fractions follow as

lmf2rat, rmf2rat,
rat2lmf, rat2rmf

lmf2tf, rmf2tf,
tf2lmf, tf2rmf

Examples
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[Nl,Dl] = rat2lmf(num,den)   

Nl =

     s^2     2 + 3s + s^2

Dl =

     s^2 + s^3   

[Nr,Dr] = rat2rmf(num,den)

Nr =

     1     2 + s

Dr =

     1 + s     0

     0         s^2   

From the latter we retrieve the transfer function model representation in Control
Toolbox format according to

[Num,Den] = rmf2tf(Nr,Dr)   

Num =

    [1x2 double]    [1x2 double]

Den =

    [1x3 double]    [1x3 double]   

We display the results in Polynomial Toolbox format by typing

mat2pol(Num), mat2pol(Den)   

ans =

     1     2 + s

ans =

     1 + s     s^2   
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This result follows directly by the command

[NUM,DEN] = rmf2rat(Nr,Dr)   

NUM =

     1     2 + s

DEN =

     1 + s     s^2   

Polynomial matrix fractions and zero-pole-gain models

The Control Toolbox of MATLAB allows a variation of the transfer function model by
representing an n m¥  transfer matrix by two n m¥  cell arrays Z and P and an n m¥
array K. The entries of Z contain the zeros of the corresponding elements of the
transfer matrix, those of P the poles, and those of K the gains. Thus, the transfer
matrix

H s
s

s

s
( ) =

+
+L

NM
O
QP

1

1

2
2

is represented by the zero-pole-gain model

Z =

     []    [-2]

P =

    [-1.0000]    [2x1 double]

K =

     1     1

where we have

P{1,2}   

ans =

     0
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     0   

Polynomial fractions may be converted to and from zpk models by the Polynomial
Toolbox commands lmf2zpk, rmf2zpk, zpk2lmf and zpk2rmf.

Consider the left fraction defined by

Nl = [ s^2 (2+s)*(1+s)];

Dl = s^2*(1+s);   

The zpk model follows as

[Z,P,K] = lmf2zpk(Nl,Dl)   

Z =

     []    [-2.0000]

P =

    [-1]    [2x1 double]

K =

     1     1   

We convert this zpk model to a right polynomial matrix fraction by the command

[Nr,Dr] = zpk2rmf(Z,P,K)   

Nr =

     1     2 + s

Dr =

     1 + s     0

     0         s^2   

lmf2zpk,
rmf2zpk,
zpk2lmf,
zpk2rmf

Examples
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Polynomial matrix fractions and Control Toolbox LTI objects

The Control Toolbox of MATLAB recognizes LTI objects in four different formats: state
space, descriptor system, transfer function and zero-pole-gain models. An arbitrary
object in any of these formats is converted to left or right polynomial matrix fraction
form by the Polynomial Toolbox commands lti2lmf or lti2rmf.

Conversely, overloaded versions of the commands ss, dss, tf and zpk are available
to create Control Toolbox objects in the corresponding formats from left or right
polynomial matrix fractions.

We start the exercise by converting a left fraction into a Control Toolbox state space
system

Nl = [ s^2 (2+s)*(1+s)];

Dl = s^2*(1+s);

sys1 = ss(Nl,Dl,'l')    

a =

                        x1           x2           x3

           x1           -1            1            0

           x2            0            0            1

           x3            0            0            0

b =

                        u1           u2

           x1            1            1

           x2            0            3

           x3            0            2

c =

                        x1           x2           x3

           y1            1            0            0

lti2lmf, lti2rmf

ss, dss, tf, zpk

Examples

ss
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d =

                        u1           u2

           y1            0            0

Continuous-time system.   

The ss command requires the presence of the Control Toolbox. The option 'l' is the
default and can be omitted.

We convert this state space model to a right fraction according to

[Nr,Dr] = lti2rmf(sys1)   

Constant polynomial matrix: 1-by-2

Nr =

     0     1

Dr =

     1.8 + 2.7s + 0.9s^2     1 + s

    -0.9s^2                  0   

From this right fraction we manufacture a Control Toolbox tf object by the command

sys2 = tf(Nr,Dr,'r')  

Transfer function from input 1 to output:

     0.9014

-----------------

0.9014 s + 0.9014

Transfer function from input 2 to output:

0.9014 s + 1.803

----------------

lti2rmf

tf
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   0.9014 s^2

From this we retrieve our left fraction as

[Nl2,Dl2] = lti2lmf(sys2)   

Nl2 =

     s^2     2 + 3s + s^2

Dl2 =

     s^2 + s^3   

The matrix fraction representation may be changed to a zero-pole-gain representation
by the overloaded command

sys3 = zpk(Nl,Dl)  

Zero/pole/gain from input 1 to output:

  1

-----

(s+1)

Zero/pole/gain from input 2 to output:

(s+2)

-----

 s^2

The zpk model may be reverted to a right fraction according to

[Nr,Dr] = lti2rmf(sys3)   

Nr =

     1     2 + s

Dr =

     1 + s     0

zpk

lti2rmf
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     0         s^2   

SIMULINK models

The Polynomial Toolbox allows to include polynomial fraction models directly into
SIMULINK models. SIMULINK is started by by typing

simulink   

After opening Block sets and Toolboxes in the SIMULINK Library and double clicking
POL  the Polynomial Library window appears (Fig. 4).

Fig. 4. The Polynomial Library Window in SIMULINK

The Polynomial Matrix Fraction block may be handled as any other Simulink built-in
block to form a model. Consider the simulation of a discrete-time unit feedback
system as in Fig. 5.

Fig. 5. Unit feedback system

The plant P is defined by the left polynomial matrix fraction

P z D z N z( ) ( ) ( )= -1

with
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D = z-1; N = 0.5;   

We create the SIMULINK block diagram of Fig. 6 by dragging and interconnecting
various standard blocks in the usual way. The parameters of the Polynomial Matrix
Fraction block are defined as in Fig. 7. Finally, Fig. 8 shows the simulated step
response.

Fig. 6. SIMULINK model of the unit feedback system

Fig. 7. Parameters of the Polynomial Matrix Fraction block
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Fig. 8. Step response of the unit feedback system

Useful functions

The Polynomial Toolbox provides various functions to evaluate polynomial matrix
fraction properties. Consider the left fraction P s D s N s( ) ( ) ( )= -1  defined by

D = [1+s 2; 0 3];

N = [1; 1];   

The properness and strict properness of the fraction is tested by typing

isproper(N,D)   

ans =

     1

or

isproper(N,D,'strictly')

ans =

     0   

The H 2 -norm of the fraction may be found with the help of the function

h2norm(N,D)   

isproper

h2norm,
hinfnorm, norm
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Warning: The matrix fraction is not strictly proper. H2 norm is
infinite.

ans =

   Inf

The function call

norm(N,D,2)   

Warning: The matrix fraction is not strictly proper. H2 norm is
infinite.

ans =

   Inf

yields the same result. The H • -norm follows with the function hinfnorm and also by
typing

norm(N,D,inf)   

ans =

    0.4714

To compute the norms of right fractions the option 'r' is available.

The routines longldiv and longrdiv may be used to compute the Markov
parameters of a continuous- or discrete-time system represented in left or right
polynomial matrix fraction form. In the discrete-time case the Markov parameters
constitute the impulse response. The command

[Q,R] = longldiv(N,D,5)   

returns

Zero polynomial matrix: 2-by-1,  degree: -Inf

Q =

     0

     0

longldiv,
longrdiv
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R(:,:,1) =

         0

    0.3333

R(:,:,2) =

    0.3333

         0

R(:,:,3) =

   -0.3333

         0

R(:,:,4) =

    0.3333

         0

R(:,:,5) =

   -0.3333

         0

R(:,:,6) =

    0.3333

         0

The matrices R j(: , : , ) , j = 2, 3, L, 6, are the first five Markov coefficients. Consult the
manual page of longldiv for a detailed description.

The Gramian of a stable LTI system with transfer H is defined as

G H j H j dT= -
-•

•z1

2p
w w w( ) ( )

in the continuous-time case, and as

gram



88 Polynomial matrix fractions and LTI systems

G H e H e dT j j= -

-
z1

2p
ww

p

p
w( ) ( )

in the discrete-time case. The function gram allows the computation of the Gramian
directly from the left- or right polynomial matrix fraction of the system. We have for
instance

gram(1,1+s)   

ans =

    0.5000

Given a state space system &x Ax= , y Cx=  with

A = [-3 -4;1 0]; C = [1 1];   

we may compute its observability Gramian according to

gram(C,s*eye(2)-A,'r')   

ans =

    0.2083    0.1250

    0.1250    0.2083

Controllability Gramians may similarly be computed.
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 5 Control system design

Introduction

In the context of polynomial methods, control system design amounts to the selection
of a polynomial matrix fraction description for a dynamic output feedback
compensator to satisfy given specifications. This is one of the steps in industrial
design that needs to be complemented with other steps such as exploratory analysis,
identification, analysis, simulation, evaluation and assessment.

The Polynomial Toolbox provides several routines to solve typical design tasks. Their
modifications as well as polynomial solutions to many other design problems can
easily be built with the help of the basic tools of the Polynomial Toolbox.

In this chapter we successively discuss several basic control design routines, H 2

optimization, and H •optimization.

Basic control routines

The Polynomial Toolbox offers basic functions to

• stabilize the plant and, moreover, to parametrize all stabilizing controllers

• place closed-loop poles by dynamic output feedback

• design deadbeat controllers for discrete-time systems

Table 3 lists the corresponding routines.

Table 3. Basic control design routines

stab Stabilization and Youla-Kucera parametrization

pplace Pole placement

debe Deadbeat  design

Introduction
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A simple random stabilization can be achieved as follows. Given a linear time-
invariant plant with transfer matrix

P v D v N v( ) ( ) ( )= -1

where v  can be any of the variables s, p, z, q, z -1  or d , the command

[Nc,Dc] = stab(N,D)

computes a stabilizing controller with transfer matrix

C v N v D vC C( ) ( ) ( )= -1

The resulting closed-loop poles are randomly placed in the stability region, whose
shape of course depends on the choice of the variable.

For the same plant, the command

[Nc,Dc,E,F] = stab(N,D)

is used to obtain the parametrization of all stabilizing controllers in the form

C v N v P v E v T v D v P v F v T vC c( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + - -b gb g 1

P v( )  is an arbitrary but stable polynomial matrix parameter of compatible size, and
T v( )  is another (not necessarily stable) arbitrary polynomial matrix parameter of
compatible size. The parameters can be chosen at will but so that the resulting
controller is proper (or causal). If any common factor in C v( )  is cancelled then the
above formula is the standard Youla-Kucera parametrization of all stabilizing
controllers and det ( )P v  is the resulting closed-loop characteristic polynomial.

Similarly, for a plant with transfer matrix

P v N v D v( ) ( ) ( )= -1

the command

[Nc,Dc] = stab(N,D,'r')

computes a stabilizing controller with transfer matrix

C v D v N vC C( ) ( ) ( )= -1

Stabilization

Youla-Kucera
parametrization
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The command

[Nc,Dc,E,F,degT] = stab(N,D,'r')

gives rise to the parametrization

C v P v D v T v F v P v N v T v E vc C( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= - +-b g b g1

where P v( )  is an arbitrary but stable polynomial matrix parameter of compatible size
and T v( )  is another (not necessarily stable) arbitrary polynomial matrix parameter of
compatible size. The parameters can be chosen at will but such that the resulting
controller is proper (or causal).

Consider the simple continuous-time plant with defined by

d = 2-3*s+s^2

n = s+1

It has two unstable poles:

roots(d)   

ans =

    2.0000

    1.0000   

To obtain a stabilizing controller, type

[nc,dc] = stab(n,d)

nc =

     73 - 2.8s

dc =

     9.9 + s

Indeed, this controller gives rise to the closed-loop characteristic polynomial

cl = d*dc+n*nc

cl =

Example
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     93 + 43s + 4s^2 + s^3

and all closed-loop poles are in the left half plane:

roots(cl)

ans =

  -0.8297 + 6.1991i

  -0.8297 - 6.1991i

  -2.3816

Using the polynomial approach you can get not just one but all stabilizing controllers.
Type

[nc,dc,e,f] = stab(n,d)

nc =

     1.4 + 6.8s

dc =

     0.98 + s

e =

     2 - 3s + s^2

f =

     1 + s   

to get another (because of the random character of the macro) stabilizing controller,
along with the parametrization of all stabilizing compensators

n

d

c s t s

c s t s
controller

controller

21.396 +  6.83s) 2 -  3s +  s

0.9801 +  s) 1 +  s)
=

+
-

( ( ) ( ) ( )

( ( ) ( ( )
.

Taking c s( ) = 1  and t s( )  arbitrary we get all the controllers that assign the closed-loop
characteristic polynomial to be

m = d*dc+n*nc
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m =

     3.4 + 7.3s + 4.8s^2 + s^3   

The closed-loop poles are positioned at

roots(m)   

ans =

   -2.1221

   -1.8176

   -0.8701   

Similarly, for c s( )  fixed stable and t s( )  arbitrary we always obtain the closed-loop
characteristic polynomial m s c s( ) ( ) , unless we perform a cancellation in the controller.
If t s( )  is chosen such that m s( )  cancels then the resulting closed-loop characteristic
polynomial equals exactly c s( ) .

Thus, for

c = (s+1)*(s+2)*(s+3);

and

t   

t =

     2.525 + 3.616s + 1.17s^2   

we obtain

nc1 = nc*c+e*t   

nc1 =

     13.42 + 55.99s + 77.52s^2 + 42.48s^3 + 8s^4   

dc1=dc*c-f*t  =

dc1 =

     3.356 + 10.64s + 12.09s^2 + 5.81s^3 + s^4   
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which are both divisible by m. Indeed,

nc2 = nc1/m   

nc2 =

     4 + 8s   

dc2 = dc1/m

dc2 =

     1 + s   

Applying this controller we have

cl2 = d*dc2+n*nc2   

cl2 =

     6 + 11s + 6s^2 + s^3

roots(cl2)

ans =

   -3.0000

   -2.0000

   -1.0000

which equals the desired c s( ) .

Consider the three-input two-output discrete-time plant given by the transfer matrix
P z N z D z( ) ( ) ( )- - - -=1 1 1 1  with

N = [2 zi zi+1; 1-2*zi 0 zi]

N =

     2             z^-1     1 + z^-1

     1 - 2z^-1     0        z^-1   

and

Example
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Dd = diag([2*zi+1 zi-1 1]);  

D=[1 1 1; 0 1 zi; 0 0 1]*Dd*[1 0 0; zi+1 1 0; zi 1 1]

D =

     3z^-1 + z^-2     z^-1          1

    -1 + 2z^-2       -1 + 2z^-1     z^-1

     z^-1             1             1   

The plant is stabilized by the controller C v D v N vC C( ) ( ) ( )= -1  with

[Nc,Dc] = stab(N,D,'r')

Nc =

     16    -21 + 5.2z^-1

     21    -37 + 7.1z^-1

    -86     1.5e+002 - 29z^-1

Dc =

    -13 + 12z^-1        -2.4 - 6.4z^-1   -2.4 - 4z^-1 + 1.2z^-2

    -32 + 13z^-1         5.9 - 5.5z^-1   11 - 3.1z^-1 - 1.6z^-2

     1.3e+002 - 57z^-1  -22 + 29z^-1     -22 + 31z^-1

Indeed, the feedback matrix

Cl = Dc*D+Nc*N

Cl =

     13 + 11z^-1 + 2.5z^-2     0                 0

     0                         5.1 + 3.1z^-1     0

     0                         0                 19 + 17z^-1   

is stable as proved by typing

isstable(Cl)   
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ans =

     1  

Typically, the closed-loop poles should not only be stable but also located in
prescribed positions within the stability region. The routine pplace takes care of
this. Given the  plant with transfer matrix

P v D v N v( ) ( ) ( )= -1

and a vector of desired closed-loop pole locations poles,  the command

[Nc,Dc] = pplace(N,D,poles)

computes a controller with transfer matrix

C v N v D vC C( ) ( ) ( )= -1

which places the closed-loop poles at the locations poles. The multiplicity of the
poles is increased if necessary. The resulting system may have real or complex
coefficients depending on whether or not the desired poles are self-conjugate.

For the same plant and the same desired locations vector the command

[Nc,Dc,E,F,degT] = pplace(N,D,poles)

may be used to obtain the parametrization

C v N v E v T v D v F v T vC c( ) ( ( ) ( ) ( ))( ( ) ( ) ( ))= + - -1

of all other controllers yielding the same dynamics. T v( )  is an arbitrary polynomial
matrix parameter of compatible size and of degree bounded by degT.

The pole placement technique is particularly useful for single-input single-output
plants. The macro does its job for multi-input multi-output systems as well but the
user should be aware of the fact that assigning just pole locations does not need to be
enough. In the multi-input multi-output case the desired behavior typically also
depends on the closed-loop invariant polynomials rather than on the pole locations
only. In fact, the assignment of invariant polynomials is very easy: all that is needed
is to place the desired invariant polynomials pi  into a diagonal matrix R v( ) of the
same size as D v( ) and call

[Nc,Dc] = pplace(N,D,R).

Pole placement
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Dually, if the plant transfer matrix is given by

P v N v D v( ) ( ) ( )= -1

then the command

[Nc,Dc] = pplace(N,D,poles,'r')

computes a controller transfer matrix in the form

C v D v N vC C( ) ( ) ( )= -1

The command

[Nc,Dc,E,F,degT] = pplace(N,D,poles,'r')

gives rise to the parametrization

C v D v T v F v N v T v E vc C( ) ( ) ( ) ( ) ( ) ( ) ( )= - +-b g b g1

T v( )  is an arbitrary polynomial matrix parameter of compatible size and degree of at
most  degT.

To prescribe not only he locations of the poles but also their distribution over the
invariant polynomials pi , put the poles into a diagonal matrix R v( )  of the same size as
D v( ) and call

[Nc,Dc] = pplace(N,D,R,'r').

Consider a simple continuous-time plant described by

d = 2-3*s+s^2;

n = s+1;

The plant has two unstable poles

roots(d)   

ans =

    2.0000

    1.0000   

Example
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The poles may be shifted arbitrarily with a first order controller. Hence, the resulting
feedback system has three poles. We place them at the locations s1 1= - , s j2 1= - +
and s j3 1= - - . A controller that puts the poles at these locations results from

[nc,dc] = pplace(n,d,[-1,-1+j,-1-j])   

nc =

     5s

dc =

     1 + s   

and, hence, has the transfer function

n

d

s

s
c

c

=
+
5

1
.

Indeed,

r = d*dc+n*nc   

r =

     2 + 4s + 3s^2 + s^3   

and

roots(r)   

ans =

  -1.0000 + 1.0000i

  -1.0000 - 1.0000i

  -1.0000   

as desired. There are no other proper controllers placing poles exactly that way as

[nc,dc,f,g,degT] = pplace(n,d,[-1,-1+j,-1-j])

nc =

     5s
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dc =

     1 + s

f =

     2 - 3s + s^2

g =

     1 + s

degT =

  -Inf   

The parameter T s( ) = 0  laves no degree of freedom.

In discrete-time systems, there is one pole location of particular interest. The closed-
loop system can be forced to have a finite time response from any initial condition by
making the closed-loop characteristic polynomial equal to a suitable power of z  or q .
Equivalently, the characteristic polynomial equals 1 for systems described by a delay
operator ( z -1  or d ).

The resulting performance is called deadbeat control and can be achieved as follows.
Given a discrete-time plant with transfer matrix

P z D z N z( ) ( ) ( )= -1

the command

[Nc,Dc] = debe(N,D)

computes a deadbeat controller with transfer matrix

C z N z D zC C( ) ( ) ( )= -1

The resulting closed-loop response to any initial condition as well as to any finite
length disturbance disappears in a finite number of steps.

Similarly, for a discrete-time plant with transfer matrix

P z N z D z( ) ( ) ( )= -1

the command

Deadbeat
controller
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[Nc,Dc] = debe(N,D,'r')

computes a deadbeat regulator with transfer matrix

C z D z N zC C( ) ( ) ( )= -1

The macro works similarly for the other discrete-time operators q, d and z -1 .

If any other deadbeat regulators exist then they can be obtained with the
parametrization

C z N z E z T z D z F z T zC c( ) ( ( ) ( ) ( ))( ( ) ( ) ( ))= + - -1

which is computed by the command

[Nc,Dc,E,F,degT] = debe(N,D),

The alternative parametrization

C z D z T z F z N z T z E zc C( ) ( ( ) ( ) ( )) ( ( ) ( ) ( ))= - +-1

is computed by the command

[Nc,Dc,E,F,degT] = debe(N,D,'r').

T z( )  is an arbitrary polynomial matrix parameter of compatible size with degree
limited by degT. Any such choice of T z( )  results in a proper controller yielding the
desired dynamics.

If the design is being made in the backward shift operators d  or z -1  then the degree
of T  is not limited. Any choice of T  results in a causal controller that guarantees a
finite response (with the number of steps depending on the degree, of course). In this
case the output argument degT is useless and is returned empty.

Consider a simple third-order discrete-time plant with the scalar strictly proper
transfer function P z D z N z( ) ( ) ( )= -1  given by

N = pol([1 1 1],2,'z')

N =

     1 + z + z^2   

D = pol([4 3 2 1],3,'z')

Example



Basic control routines 101

The Polynomial Toolbox for MATLAB

D =

     4 + 3z + 2z^2 + z^3   

A deadbeat regulator is designed simply by typing

[Nc,Dc] = debe(N,D)

Nc =

    -2.3 - 2.3z - 2.7z^2

Dc =

     0.57 + 0.71z + z^2   

Computing the closed-loop characteristic polynomial

D*Dc+N*Nc   

ans =

     z^5   

reveals finite modes only and hence confirms the desired deadbeat performance.

Trying

[Nc,Dc,E,F,degT] = debe(N,D)

Nc =

    -2.3 - 2.3z - 2.7z^2

Dc =

     0.57 + 0.71z + z^2

E =

     4 + 3z + 2z^2 + z^3

F =

     1 + z + z^2

degT =
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  -Inf   

shows (as degT=-Inf) that there is no other proper deadbeat regulator such that the
resulting system is of order 5. Deadbeat controllers of higher order can be found by
making the design in d  or by solving the associated Diophantine equation directly .
For instance, the command

[Dc,Nc,F,E] = axbyc(D,N,z^6)

Dc =

    -0.47 + 0.1z + 0.25z^2 + z^3

Nc =

     1.9 - 0.88z - 1.4z^2 - 2.2z^3

F =

    -1 - z - z^2

E =

     4 + 3z + 2z^2 + z^3   

yields a set of third order controllers parametrized by a constant T .

For comparison we now perform the same design in the backward-shift operator z -1 .
To convert the plant transfer function into z -1 , type

[Nneg,Dneg] = reverse(N,D);

symbol(Nneg,'z^-1'); symbol(Dneg,'z^-1');

Nneg,Dneg   

Nneg =

     z^-1 + z^-2 + z^-3

Dneg =

     1 + 2z^-1 + 3z^-2 + 4z^-3   

Typing
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[Ncneg,Dcneg] = debe(Nneg,Dneg)

Ncneg =

    -2.7 - 2.3z^-1 - 2.3z^-2

Dcneg =

     1 + 0.71z^-1 + 0.57z^-2   

leads to the same regulator as previously (the only deadbeat regulator of second
order). Causal regulators of higher order can be obtained from

[Ncneg,Dcneg,Eneg,Fneg,degTneg] = debe(Nneg,Dneg)

Ncneg =

    -2.7 - 2.3z^-1 - 2.3z^-2

Dcneg =

     1 + 0.71z^-1 + 0.57z^-2

Eneg =

     0.25 + 0.5z^-1 + 0.75z^-2 + z^-3

Fneg =

     0.25z^-1 + 0.25z^-2 + 0.25z^-3

degTneg =

     []   

A parameter T z( )-1  of any degree may be used. For instance, the choice of T z( )- =1 1

yields a third order regulator with

Nc_other = Ncneg+Eneg   

Nc_other =

    -2.5 - 1.8z^-1 - 1.5z^-2 + z^-3   

Dc_other=Dcneg-Fneg   

Dc_other =
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     1 + 0.46z^-1 + 0.32z^-2 - 0.25z^-3   

The check

Dneg*Dc_other+Nneg*Nc_other   

Constant polynomial matrix: 1-by-1

ans =

     1   

confirms the deadbeat performance.

Consider the two-input two-output plant with transfer matrix P z N z D z( ) ( ) ( )= -1

given by

N = [1-z z; 2-z 1]   

N =

     1 - z     z

     2 - z     1   

D = [1+2*z-z^2  -1+z+z^2; 2-z 2+3*z+2*z^2]   

D =

     1 + 2z – z^2    -1 + z + z^2

     2 - z            2 + 3z + 2z^2

The deadbeat regulator is found in the form C z D z N zC C( ) ( ) ( )= -1  by typing

[Nc,Dc] = debe(N,D,'r')   

Nc =

    -3.3 - 2.7z       0.59 – 1.2z

     0.33 - 0.35z     0.41 + 0.22z

Dc =

     1.4 - z     0.39 + 0.5z

Example
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    -0.37       -0.39 + 0.5z

Indeed, the resulting closed-loop denominator matrix

Dc*D+Nc*N   

ans =

     z^3     0

     0       z^3

reveals that only finite step modes are present

H-2 optimization

H 2  or linear-quadratic-Gaussian (LQG) control is a modern technique for designing
optimal dynamic controllers. It allows to trade off regulation performance and control
effort, and to take process and measurement noise into account. The Polynomial
Toolbox offers the two macros listed in Table 4 for H 2  optimization by polynomial
methods.

Table 4. H-2 optimization routines

splqg Scalar H-2 optimization

plqg Matrix H-2 optimization

The function call

[y,x,regpoles,obspoles] = plqg(d,n,p,q,rho,mu)

results in the solution of the SISO LQG problem defined by

• Response of the measured output to the control input:

y P s u P s
n s

d s
= =( ) , ( )

( )

( )

• Response of the controlled output to the control input:

Introduction

Scalar case
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z Q s u Q s
p s

d s
= =( ) , ( )

( )

( )

• Response of the measured output to the disturbance input:

y R s v R s
q s

d s
= =( ) , ( )

( )

( )

In state space form

& ( ) ( )

( ) ( )

( ) ( )

x Ax Bu Gv P s C sI A B

z Dx Q s D sI A B

y Cx w R s C sI A G

= + + = -
= = -
= + = -

-

-

-

1

1

1

The scalar white state noise v has intensity 1, and the white measurement noise w
has intensity µ. The compensator C(s) = y(s)/x(s) minimizes the steady-state value of

E z t u t2 2( ) ( )+ r{ }
The output argument regpoles contains the regulator poles and obspoles contains
the observer poles. Together the regulator and observer poles are the closed-loop
poles.

Consider the LQG problem for the plant with transfer function

P s
s s s s

s s s s s
( )

( . . . . )

( . . . . )
=

+ + + +
+ + + +

-10 0 16 10 0088 0 4802 9 0072

0 08 2 5022 0 06002 0 56295

4 4 3 2

2 4 3 2

This is a scaled version of a mechanical positioning system discussed by Dorf, 1989
(pp. 544–546). The definition of the LQG problem is completed by choosing Q = R = P
so that p = q = n. Furthermore, we let r = 1  and m = -10 6 .

We input the data as follows:

n = 1e-4*(s^4+0.16*s^3+10.0088*s^2+0.4802*s+9.0072);

d = s^2*(s^4+0.08*s^3+2.5022*s^2+0.06002*s+0.56295);

p = n; q = n; rho = 1; mu = 1e-6;  

We can now compute the optimal compensator:

[y,x,regpoles,obspoles] = plqg(d,n,p,q,rho,mu)   

Example
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MATLAB returns

y =

     0.9 + 34s + 7.5s^2 + 1.5e+002s^3 + 6.4s^4 + 61s^5

x =

     1 + 2.7s + 4.8s^2 + 5.5s^3 + 4.4s^4 + 1.9s^5 + s^6

regpoles =

  -0.0300 + 1.5000i

  -0.0300 - 1.5000i

  -0.0101 + 0.5000i

  -0.0101 - 0.5000i

  -0.0284 + 0.0282i

  -0.0284 - 0.0282i

obspoles =

  -0.0692 + 1.5048i

  -0.0692 - 1.5048i

  -0.6931 + 0.3992i

  -0.6931 - 0.3992i

  -0.1734 + 0.7684i

  -0.1734 - 0.7684i   

Consider the linear time-invariant plant transfer matrix

P v D v N v( ) ( ) ( )= -1

where v  can be any of the variables s, p, z, q, z -1  and d . The commands

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2)

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2,'l')

MIMO case
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compute an LQG optimal regulator as in Fig. 9 with transfer matrix

C v N v D vC C( ) ( ) ( )= -1

Fig. 9. LQG feedback structure

The controller minimizes the steady-state value of the expected cost

E y t Q y t u t R u tT T( ) ( ) ( ) ( )2 2+e j
Q2  and R2  are symmetric nonnegative-definite weighting matrices. The symmetric
nonnegative-definite matrices Q1  and R1  represent the intensities (covariance
matrices) of the input and measurement white noises, respectively, and need to be
nonsingular.

Example 1  (Kucera, 1991, pp. 298–303). Consider the discrete-time plant described
by a left matrix fraction D z N z-1 ( ) ( ) , where

N = [1; 1]

D = [z-1/2 0; 0 z^2]

Define the nonnegative-definite matrices

Q1 = 1;

Q2 = [7 0; 0 7];

R1 = [0 0; 0 1];

R2 = 1;

Examples
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The optimal LQG controller is obtained by typing

 [Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2)

MATLAB returns

Nc =

    -0.10633z^2     0

Dc =

     -0.21266z^2 - 0.85065z^3              0

     0.10633 + 0.34409z^2 - 1.3764z^3     1.1756

 If the same plant is described by a right matrix fraction description N z D z( ) ( )-1 , with

N = [z^2; z-1/2]

D = z^2*(z-1/2)

then the controller results by typing

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2, 'r')

 Constant polynomial matrix: 1-by-2

Nc =

     0.5     0

Dc =

     1 + 4z

Example 2.  Consider now a continuous-time problem described by

N = [1; 1]

D = [s-2 0; 0 s^2+1]

and the weighting matrices

Q1 = 1;

R1 = eye(2);



110 Control system design

Q2 = [10 0; 0 2];

R2 = 1;

The call

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2)

returns the optimal LQG feedback controller

Nc =

    -1.3436 + 0.94635s     17.0728

Dc =

    -0.61922 + 0.12144s         5.0345 + s

     3.2092 + 2.5541s + s^2    -7.5191 - 16.4344s

The closed-loop poles of the optimal feedback system follow as

 roots(N*Nc+D*Dc)

ans =

 -3.72972478386939

 -2.22996241633438

 -0.42364369708415 + 1.07974078889846i

 -0.42364369708415 - 1.07974078889846i

 -0.38868587951944 + 1.05190312987575i

 -0.38868587951944 - 1.05190312987575

H-infinity optimization

H •  optimization is a powerful modern tool. It allows the design of high-performance
and robust control systems. The Polynomial Toolbox offers two routines for H •
design:

Introduction
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• Mixed sensitivity optimization of SISO systems relying on transfer function
descriptions

• A routine dsshinf for finding all suboptimal solutions of the general
standard H •optimization problem based on descriptor representations

• A very comprehensive routine dssrch for finding optimal solutions of the general
standard H •optimization problem based on descriptor representations

The SISO mixed sensitivity problem consists of minimizing the square root of

sup ( ) | ( ) ( )| | ( ) ( )|
w

w w w w w
Œ

+
R

V j W j S j W j U j
2

1
2

2
2e j

where

S
PC

U
C

PC
=

+
=

+
1

1 1
,

are the sensitivity and input sensitivity functions of the closed-loop system of Fig. 10,
respectively.

Fig. 10. SISO closed-loop system

The plant transfer function is

P s
n s

d s
( )

( )

( )
=

The rational function

V s
m s

d s
( )

( )

( )
=

is a shaping filter, and the rational functions

SISO mixed
sensitivity
optimization
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W s
a s

b s
W s

a s

b s
1

1

1
2

2

2

( )
( )

( )
, ( )

( )

( )
= =

are weighting filters.  The input parameters n, d, m, a1 , b1 , a2  and b2   are scalar
polynomials or constants. The polynomial m needs to have the same degree as d. The
polynomials m, b1  and b2  are required to be strictly Hurwitz.

An important property of the solution of the mixed sensitivity problem is that the
roots of the polynomial m return as closed-loop poles (Kwakernaak, 1993). Hence,
choosing m amounts to pre-assigning as many closed-loop poles as m has roots. If
these poles and also the weighting functions W1  and W2  are well chosen then these
pre-assigned closed-loop poles are the dominant closed-loop poles and, hence, to a
large extent determine the closed-loop bandwidth and other important closed-loop
properties.

The SISO mixed sensitivity problem is solved by the command

[y,x,gopt] = mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy)

The input parameters gmin and gmax are lower and upper bounds for the minimal
value of the mixed sensitivity criterion, respectively. The parameter accuracy
specifies how closely the minimal norm is to be approached.

Several optional input parameters that allow more control over the algorithm are
described on the manual page for mixeds.

The algorithm is based on the polynomial solution of the standard H •optimization
problem (Kwakernaak, 1996). The optimal solution is approached by a binary search
algorithm. After the optimal solution has been found the compensator is simplified by
cancelling any common roots of the numerator and denominator of its transfer
function.

Consider the mixed sensitivity problem for the plant with transfer function

P s
n s

d s s
( )

( )

( )
= =

1
2

defined by

V s
m s

d s

s s

s
W s

a s

b s
W s

a s

b s
c rs( )

( )

( )
, ( )

( )

( )
, ( )

( )

( )
( )= =

+ +
= = = = +

1 2
1 1

2

2 1
1

1
2

2

2

Example
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We let c = 0.1, r = 0.1. First define the input parameters:

c = 0.1; r = 0.1; n = 1; d = s^2; m = s^2+s*sqrt(2)+1;

a1 = 1; b1 = 1; a2 = c*(1+r*s); b2 = 1;

gmin = 1; gmax = 10; accuracy = 1e-4;

Next we call the routine mixeds:

[y,x,gopt] = mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy)

The routine returns

y =

     57 + 96s

x =

     79 + 16s + s^2

gopt =

    1.3834   

The minimal value of the criterion is 1.3834 and the optimal compensator has the
transfer function

C s
y s

x s

s

s s
( )

( )

( )
= =

+
+ +

57 96

79 16 2

It is easy to compute the closed-loop poles of the optimal system:

clpoles = roots(d*x+n*y)   

clpoles =

  -7.3282 + 1.8769i

  -7.3282 - 1.8769i

  -0.7071 + 0.7071i

  -0.7071 - 0.7071i   

The commands
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omega = logspace(-2,2);

S = bode(pol2mat(d*x),pol2mat(d*x+n*y),omega);

T = bode(pol2mat(n*y),pol2mat(d*x+n*y),omega);   

invoke a well-known routine of the Control Toolbox to compute the magnitudes of the
sensitivity function and complementary sensitivity function

S
PC

dx

dx ny
T

PC

PC

ny

dx ny
=

+
=

+
=

+
=

+
1

1 1
,

respectively. The sensitivity functions may be plotted by the commands

subplot(1,2,1), loglog(omega,S), axis([1e-2 1e2 1e-4 10])

ylabel('S'), xlabel('omega'), grid

subplot(1,2,2), loglog(omega,T), axis([1e-2 1e2 1e-4 10])

ylabel('T'), xlabel('omega'), grid

Fig. 11. Sensitivity and complementary sensitivity functions
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Fig. 11 shows the plots. The sensitivity functions are very well behaved and predict
excellent performance and good robustness.

The standard H •optimization problem is characterized by the block diagram of Fig.
12. The external input v represents the driving signals for disturbances,
measurement noise and reference inputs, while u is the control input. The output z is
the error signal, and y the observed signal that is available for feedback.

Fig. 12. The standard problem

If the generalized plant G is represented in transfer matrix form as

G s
G s G s

G s G s
( )

( ) ( )

( ) ( )
=
L
NM

O
QP

11 12

21 22

and the compensator has the transfer matrix K s( ) , then the closed-loop system
$( ) ( ) $( )z s H s v s=  has the transfer matrix

H s G s G s I K s G s K s G s( ) ( ) ( )[ ( ) ( )] ( ) ( )= + - -
11 12 22

1
21

The H •  problem is the problem of finding a compensator K that minimizes the • -
norm H •  of the closed-loop transfer matrix.

The state space solution of the H •  problem is very well known. The Polynomial
Toolbox offers an implementation of an algorithm for a more general problem, where
the generalized plant is represented in the descriptor form

Descriptor
solution of the
standard H-
infinity problem
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E x Ax B
v

u

z

y
Cx D

v

u

& = +
L
NM
O
QP

L
NM

O
QP = +

L
NM
O
QP

Since descriptor systems may have nonproper transfer matrices this formulation
makes it possible to consider and solve H •problems with nonproper weighting
functions. Nonproper weighting functions arise for instance when it is desired to
control the high-frequency roll-off of the closed-loop transfer matrix.

The command

[Ak,Bk,Ck,Dk,Ek,clpoles] = ...

     dsshinf(A,B,C,D,E,nmeas,ncon,gamma)

computes a suboptimal compensator, if any exists, such that

H • £ g

with g  (gamma) a given nonnegative number. The input parameter nmeas is the
number of measured variables (the dimension of y) and ncon the number of control
inputs (the dimension of u). The suboptimal compensator is returned in descriptor
form and has the transfer matrix

K s C sE A B Dk k k k k( ) ( )= - +-1

We consider the standard H •problem defined by the mixed sensitivity problem that
we previously studied in this section. The block diagram of Fig. 13 shows the
standard plant that defines the mixed sensitivity problem.

It is easy to see from the block diagram that the generalized plant transfer matrix is

G s

W s V s W s P s

W s

V s P s

( )

( ) ( ) ( ) ( )

( )

( ) ( )

=
- -

L

N
MMM

O

Q
PPP

1 1

20

Substituting for the various transfer functions we obtain

Suboptimal
solutions

Example
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Fig. 13. Block diagram for the mixed sensitivity problem

G s

a s m s

b s d s

a s n s

b s d s
a s

b s
m s

d s

n s

d s
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( ) ( )
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( )
( )

( )

( )

( )
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It may be checked that G is given by the left coprime polynomial matrix fraction

G s

b s a s

b s

d s

a s

m s n s

( )

( ) ( )

( )

( )

( )

( ) ( )

=
-L

N
MMM

O

Q
PPP - -

L

N
MMM

O

Q
PPP

-
1 1

2

1

2

0

0 0

0 0

0 0

0

After defining the data we convert this fraction to descriptor form by the Polynomial
Toolbox routine lmf2dss:

c = 0.1; r = 0.1; n = 1; d = s^2; m = s^2+s*sqrt(2)+1;

a1 = 1; b1 = 1; a2 = c*(1+r*s); b2 = 1;

Dg = [b1 0 -a1; 0 b2 0; 0 0 d];

Ng = [0 0; 0 a2; -m -n];

[A,B,C,D,E] = lmf2dss(Ng,Dg)

The output is

A =
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     0     1     0     0

     0     0     0     0

     0     0     1     0

     0     0     0     1

B =

   -1.4142         0

   -1.0000   -1.0000

         0         0

         0    0.0100

C =

     1     0     0     0

     0     0    -1     0

     1     0     0     0

D =

   -1.0000         0

         0    0.1000

   -1.0000         0

E =

     1     0     0     0

     0     1     0     0

     0     0     0     1

     0     0     0     0

To compute a suboptimal compensator according to the level g = 10  we type

[Ak,Bk,Ck,Dk,Ek,clpoles] = dsshinf(A,B,C,D,E,1,1,10)  
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Ak =

    0.0000    0.0000    0.0000    0.0152

   -5.2085    0.8018   -2.4004    4.8467

   -4.6877    1.0045   -4.3637    6.8464

   -0.7066   -0.1166   -0.6520   -0.0449

Bk =

         0

    0.3974

   -1.6859

   -0.0000

Ck =

   -7.0313    1.1090   -4.5268    7.6311

Dk =

     0

Ek =

         0         0         0         0

    0.5155    0.0100   -0.6605    0.4651

    0.4783   -0.2523   -0.2453   -0.5436

    0.0703   -0.0111    0.0453   -0.0611

clpoles =

 -10.0526 + 0.0000i

  -2.1935 - 2.3064i

  -2.1935 + 2.3064i

  -0.7071 - 0.7071i
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  -0.7071 + 0.7071i

To obtain the compensator K s y s x s( ) ( ) / ( )=  in transfer function form we use the
command

[y,x] = dss2rmf(Ak,Bk,Ck,Dk,Ek)   

y =

     1e+002 + 2e+002s

x =

     1.9e+002 + 76s + 16s^2 + s^3

Note that the compensator transfer function is proper. Therefore, the compensator
has a state space representation. This state space representation follows with the
help of the function dssmin, which minimizes the dimension of the descriptor
representation of the compensator:

[ak,bk,ck,dk,ek] = dssmin(Ak,Bk,Ck,Dk,Ek)   

ak =

  -10.3436   -3.2399    5.7654

         0   -4.9939    3.8368

         0   -4.1904   -0.5165

bk =

    1.6975

   -6.6721

   -4.9036

ck =

   -7.0231   -3.7929    2.7296

dk =

     0
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ek =

     1     0     0

     0     1     0

     0     0     1

Note that ek is the 3 3¥  unit matrix so that we have a three-dimensional state space
representation.

To find H •optimal — as opposed to suboptimal — solutions it is necessary to embed
the routine dsshinf in a search loop that performs a line search on the number g .
Other algorithms that have been implemented suffer from the disadvantage that
close to the optimal solution the solutions often become degenerate. The algorithm
dsshinf used in the macro dssrch of the Polynomial Toolbox avoids these
difficulties, and, indeed, exploits the singularity at the optimum to accelerate the
search by switching from binary search to a secant search method near the optimum.

Features of the macro dssrch

1. If no solution exists within the initial search interval [gmin,gmax] then the
interval is automatically expanded.

2. The macro also computes optimal solutions for generalized plants that have
unstable fixed poles.

3. The macro computes both type 1 optimal solutions (gopt coincides with the
lowest value of gamma for which spectral factorization is possible) and type 2
optimal solutions (gopt is greater than this lowest value).

4. After the search has been completed the compensator is reduced to minimal
dimension. If the compensator is proper then E k  is the unit matrix so that it is in
state space form.

5. Initially the search is binary. If the solution is of type 2 and close to optimal then
a secant method is used to obtain fast convergence to an accurate solution.

6. Before the search is initiated the descriptor representation of the generalized
plant is regularized in the sense that it is modified so that the subblocks D12  and
D21  of D  have full rank.

The command line is of the form

Optimal
solutions
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[Ak,Bk,Ck,Dk,Ek,gopt,clpoles] = ...

          dssrch(A,B,C,D,E,nmeas,ncon,gmin,gmax)

We apply the optimization algorithm to the example that we looked at earlier in this
section. Typing

[Ak,Bk,Ck,Dk,Ek,gopt,clpoles] =  dssrch(A,B,C,D,E,1,1,1,10)   

yields

Ak =

   -9.9335   -2.6876

    6.6932   -6.1368

Bk =

  -15.1682

  -14.6069

Ck =

   -7.6954    1.4476

Dk =

  1.0217e-005

Ek =

     1     0

     0     1

gopt =

    1.3833

clpoles =

  -7.3281 + 1.8765i

  -7.3281 - 1.8765i

Example



H-infinity optimization 123

The Polynomial Toolbox for MATLAB

  -0.7071 + 0.7071i

  -0.7071 - 0.7071i

The optimal compensator is in state space form. To see it in transfer function form we
use the command

[y,x] = dss2rmf(Ak,Bk,Ck,0,Ek)   

Note that we have set the small direct feedthrough coefficient D k  equal to 0. The
command yields the compensator that we also obtained earlier with the routine
mixeds:

y =

     57 + 96s

x =

     79 + 16s + s^2
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 6 Robust control with parametric
uncertainties

Introduction

Modern control theory addresses various problems involving uncertainty. A
mathematical model of a system to be controlled typically includes uncertain
quantities. In a large class of practical design problems the uncertainty may be
attributed to certain coefficients of the plant transfer matrix. The uncertainty usually
originates from physical parameters whose values are only specified within given
bounds. An ideal solution to overcome the uncertainty is to find a robust controller —
a simple, fixed controller, designed off-line, which guarantees desired behavior and
stability for all expected values of the uncertain parameters.

The Polynomial Toolbox offers several simple tools that are useful for robust control
analysis and design for systems with parametric uncertainties. The relevant macros
are briefly introduced in this chapter. More details on the underlying methods as well
as other solutions that can also be built from Polynomial Toolbox macros are
described in Barmish (1996), Bhattacharya, Chapellat and Keel (1995) and other
textbooks.

Single parameter uncertainty

Many systems of practical interest involve a single uncertain parameter. At the time
of design the parameter is only known to lie within a given interval. Quite often even
more complex problems (with a more complex uncertainty structure) may be reduced
to the single parameter case. Needless to say that the strongest results are available
for this simple case.

Even though the uncertain parameter is single it may well appear in several
coefficients of the transfer matrix at the same time. Quite in the spirit of the
Polynomial Toolbox the coefficients are assumed to be polynomial functions of the
uncertain parameter.
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Robust stability interval. To analyze the single parameter uncertain polynomial

p s q q s s q s s( , ) = + + + + + +3 10 12 62 3 4b g b g
first check whether p s q( , )  is stable for q = 0 . Then find its left-sided and right-sided
stability margins, that is, the smallest negative qm in and the largest positive qm a x

such that p s q( , )  remains stable for any q q qŒ m in max,b g .
With the Polynomial Toolbox this is an easy task: First express the given polynomial
as

p s q p s qp s( , ) ( ) ( )= +0 1

and enter the data

p0 = 3 + 10*s + 12*s^2 + 6*s^3 + s^4;

p1 = s + s^3;   

Then type

isstable(p0)

ans =

     1   

to verify nominal stability (that is, stability for q = 0 ). Finally, call

[qmin,qmax] = stabint(p0,p1)   

qmin =

   -5.6277

qmax =

   Inf   

to determine the stability margins. This result discloses that p s q( , )  is not merely
stable for q = 0  but also for all q Œ - •5 6277. ,b g . When q = -5 6277.  stability is lost.
Nothing is claimed for q < -5 6277. , however, only that stability is not guaranteed.

If you have also the Control System Toolbox available then you can combine it with
the Polynomial Toolbox and visualize the result by plotting the root-locus of a

Example 1
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fictitious plant p s p s1 0( ) ( )  under a fictitious feedback gain q  ranging over
- •5 6277. ,b g. Typing

rlocus(ss(p1,p0),qmin:.1:100)

produces the root locus plot of Fig. 14. It confirms that all the roots of
p s q p s qp s( , ) ( ) ( )= +0 1  stay inside the stability region for all q Œ -5 6277 100. ,b g. Note
also the role of the macro ss, which converts the polynomial fraction into the Control
System Toolbox state-space format.

Fig. 14. Root locus plot

Robust stabilization. Consider the plant with transfer matrix

D s q N s q
s q

q s

s

q

q s s

q q s

q

q q s

q q s qs

q q s

s

q q s

-
-

=
+

L
NMM

O
QPP

+L
NM

O
QP =

- + +
- - +

-
- - +

- - - + +
- - + - - +

L

N

MMMMM

O

Q

PPPPP

1
2

2

1

2 2

2 3 2 3

2 2 2

2 3

2

2 3

1

1 0

1 1 1
( , ) ( , )

( )

which depends on an uncertain parameter q . Suppose that q  may take any value in
the interval [0, ]1  and that its nominal value is q0 0= . The plant is described by a

Example 2



128 Robust control with parametric uncertainties

left-sided fraction of polynomial matrices in two variables: D s q( , )  and N s q( , )  that
may be written as

D s q D s qD s q D s
s

s
q q( , ) ( ) ( ) ( )= + + =

L
NMM

O
QPP
+

L
NM

O
QP +

L
NM

O
QP0 1

2
2

2
20

0

0 1

0 0

0 0

1 0

and

N s q N s q N s
s

s
q( , ) ( ) ( )= + =

+L
NM

O
QP +

L
NM

O
QP0 1

1 0

0

0 1

0 0

Fig. 15. Robust control structure

If a feedback controller with transfer matrix

N s D sc c( ) ( )-1

is applied as in Fig. 15 then the resulting closed-loop denominator matrix is

P s q D s q D s N s q N sc c( , ) ( , ) ( ) ( , ) ( )= +

The denominator matrix may also be expressed as

P s q P s qP s q P s

D s D s N s N s q D s D s N s N s q D s D sc c c c c

( , ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

= + +

= + + + +
0 1

2
2

0 0 1 1
2

2b g b g b g
To enter the data, type

D0 = [ s^2 1; 1 s ];

D1 = [ 0 1; 0 0 ];
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D2 = [ 0 0; 1 0 ];   

and

N0 = [ 1+s 0; 0 1 ];

N1 = [ 0 0; 1 0 ];   

Nominally (that is, for q = 0 ), the transfer matrix

 D s N s D s N s
s

s

s- -
-

= =
L
NMM

O
QPP

+L
NM

O
QP

1
0

1
0

2 1

0 0
1

1

1 0

0 1
( , ) ( , ) ( ) ( )

is unstable because

roots(D0)   

ans =

  -0.5000 + 0.8660i

  -0.5000 - 0.8660i

   1.0000   

To stabilize the nominal plant, call

[Nc1,Dc1] = stab(N0,D0)

Nc1 =

     51 - 30s    -2.7 + 1.7s

    -38           4.1

Dc1 =

     38 + s    -1.7

    -1          2.7 + s

This controller gives rise to the feedback denominator matrix defined by

P0 = D0*Dc1+N0*Nc1, P1 = D1*Dc1+N1*Nc1, P2 = D2*Dc1   

P0 =



130 Robust control with parametric uncertainties

     50 + 21s + 7.9s^2 + s^3     0

     0                           2.4 + 2.7s + s^2

P1 =

    -1            2.7 + s

     51 - 30s    -2.7 + 1.7s

P2 =

     0          0

     38 + s    -1.7   

This denominator is nominally stable, as expected, because

roots(P0)   

ans =

  -5.8119

  -1.0611 + 2.7264i

  -1.0611 - 2.7264i

  -1.3423 + 0.7885i

  -1.3423 - 0.7885i   

To check robust stability simply type

[qmin,qmax] = stabint(P0,P1,P2)   

qmin =

   -1.2068

qmax =

    0.4658   

This result reveals that the closed-loop system only remains stable on the interval
q Œ -1 2068 0 4658. ,  .b g, which does not include the entire desired interval 0 1, . Hence,
the controller is nominally but not robustly stabilizing. Let us try another one:
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[Nc2,Dc2] = stab(N0,D0)

Nc2 =

     94 - 51s    -18 + 17s

    -55           1e+002

Dc2 =

     55 + s    -17

    -1          18 + s

This second controller yields

P0 = D0*Dc2+N0*Nc2, P1 = D1*Dc2+N1*Nc2, P2 = D2*Dc2

P0 =

     93 + 43s + 4s^2 + s^3     0

     0                         86 + 18s + s^2

P1 =

    -1            18 + s

     94 - 51s    -18 + 17s

P2 =

     0          0

     55 + s    -17   

Again, as expected the controller is nominally stabilizing:

roots(P0)

ans =

  -8.8745 + 2.6175i

  -8.8745 - 2.6175i

  -0.8297 + 6.1991i
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  -0.8297 - 6.1991i

  -2.3816   

Its robust stability interval is

[qmin,qmax] = stabint(P0,P1,P2)

qmin =

   -0.9344

qmax =

    1.1700   

Because 0 1 0 9344 1 1700, Ã - . , .  the second controller evidently guarantees stability
on the whole required uncertainty-bounding interval. Hence, it is the desired robustly
stabilizing controller.

Interval polynomials

Another important class of uncertain systems is described by interval polynomials
with independent uncertainties in the coefficients. An interval polynomial looks like

p s q q q si i
i

i

n

( , ) ,= - +

=
Â

0

with [ , ]q qi i
- +  denoting the bounding interval for the ith coefficient. Using the

Polynomial Toolbox, it is convenient to describe interval polynomials by their “lower”
and “upper” elements

p s q si
i

i

n
- -

=

=Â( )

0

   and   p s q si
i

i

n
+ +

=

=Â( )

0

In many applications interval polynomials arise when an original uncertainty
structure is known but too complex (e.g., highly nonlinear) to be tractable but may be
“overbounded” by a simple interval once an independent uncertainty structure is
imposed.
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Graphical Method. Consider the continuous-time interval polynomial (Barmish, 1996)

p s q s s s s

s s

( , ) . , . . , . . , . . , . . , .

. , .

= + + + +

+ +

0 45 0 55 1 95 2 05 2 95 3 05 5 95 6 05 3 95 4 05

3 95 4 05

2 3 4

5 6                  

The first step in the graphical test for robust stability requires establishing that at
least one polynomial in the family is stable. Using the midpoint of each of the
intervals we obtain

p_mid = pol([0.5 2 3 6 4 4 1],6)   

p_mid =

     0.5 + 2s + 3s^2 + 6s^3 + 4s^4 + 4s^5 + s^6

isstable(p_mid)  

ans =

     1   

Next we enter the given interval polynomial in terms of two “lumped” polynomials

pminus = 0.45+1.95*s+2.95*s^2+5.95*s^3+3.95*s^4+3.95*s^5+s^6;   

and

pplus = 0.55+2.05*s+3.05*s^2+6.05*s^3+4.05*s^4+4.05*s^5+s^6;   

Using these polynomials we plot the sets p j q( , )w , consisting of what are called the
“Kharitonov rectangles”  for 0 1£ £w  using the command

khplot(pminus,pplus,0:.001:1)

This results in Fig. 16. Since none of the rectangles touches the point z = 0  the Zero
Exclusion Condition 0 œ p j q( , )w  is satisfied, and we conclude that the interval
polynomial is robustly stable. Note that as long as all the polynomial coefficients are
real numbers we only need to investigate w ≥ 0 . The plot for w £ 0  is symmetric as
p j q p j q( , ) ( , )- =w w .

Example 3
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Fig. 16. Kharitonov rectangles

Test Using Kharitonov Polynomials. For continuous-time interval polynomials we
have an even simpler method available: An interval polynomial of invariant degree
(with real coefficients) is known to be stable if and only if just its four  “extreme”
polynomials (called the Kharitonov polynomials)

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q

1 0 1 2
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4
4

5
5
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6

2 0 1 2
2
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6

3 0 1 2
2

3
3

4
4

5
5

6
6

4 0 1 2
2

3
3

4
4

5
5

( ) ;

( ) ;

( ) ;

( )

= + + + + + + +
= + + + + + + +
= + + + + + + +
= + + + + + +

- - + + - - -

+ + - - + + -

+ - - + + - -

- + + - - +

L

L

L

6
6+ +s L;

are stable. For the interval polynomial of Example 3 the Kharitonov polynomials are
computed by

[stability,K1,K2,K3,K4] = kharit(pminus,pplus)   

stability =

     1

K1 =

Example 4
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     0.45 + 1.95s + 3.05s^2 + 6.05s^3 + 3.95s^4 + 3.95s^5 + s^6

K2 =

     0.55 + 2.05s + 2.95s^2 + 5.95s^3 + 4.05s^4 + 4.05s^5 + s^6

K3 =

     0.55 + 1.95s + 2.95s^2 + 6.05s^3 + 4.05s^4 + 3.95s^5 + s^6

K4 =

     0.45 + 2.05s + 3.05s^2 + 5.95s^3 + 3.95s^4 + 4.05s^5 + s^6   

The macro also checks the stability of the Kharitonov polynomials. The resulting
value of stability confirms that all the four polynomials are stable and we
conclude that the interval polynomial is robustly stable.

Robust stability of discrete-time interval polynomials. For discrete-time polynomials
(of degree 4 and higher), the Kharitonov-like extremal results are not available.
However, the graphical method may be applied for discrete-time polynomials as well
as for other stability regions.

Consider the interval polynomial

p z q z z z z( , ) , , , ,= + + + +10 20 20 30 128 138 260 270 1682 3 4 .

To test its robust stability, we write

p z q p z q p z q p z q p z q p z( , ) ( ) ( ) ( ) ( ) ( )= + + + +0 1 1 2 2 3 3 4 4 ,

where p z z z z z0
2 3 410 20 128 260 168( ) = + + + + , p z1 1( ) = , p z z2 ( ) = , p z z3

2( ) =  and
p z z4

3( ) = . Such an expression is called polytopic and will be discussed later in a more
general setting. For the moment it enables us to describe each interval coefficient by
a separate uncertain parameter q i  ranging over 0 10, .

To analyze the interval polynomial we first enter the data

p0 = 10 + 20*z + 128*z^2 + 260*z^3 + 168*z^4;

p1 = 1; p2 = z; p3 = z^2; p4 = z^3;

Qbounds = [ 1 10; 1 10; 1 10; 1 10 ];   

Next we check that p0  is stable

Example 5
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isstable(p0)   

ans =

     1   

Then we plot the value sets p c q( , )  but now with c  sweeping around the unit circle.
Note that the value sets no longer have a rectangular shape and we must use a more
general command

ptopplot(p0,p1,p2,p3,p4,Qbounds,exp(j*(0:0.001:1)*2*pi))

to obtain the plot of Fig. 17.

Fig. 17. Value sets

To see better what is happening in the neighborhood of the point 0 we zoom the graph
for generalized frequencies e jw  in the critical range w p pŒ 0 6 1 4. , .b g:

ptopplot(p0,p1,p2,p3,p4,Qbounds,exp(j*(0.3:0.001:0.7)*2*pi))
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Fig. 18. Zoomed plot of value sets

This yields the plot of Fig. 18. Indeed, zero is excluded from all the octagons
(0 œ p c q( , )  for all c  on the unit circle) and we conclude that the discrete-time interval
polynomial is robustly stable.

Polytopes of polynomials

A more general class of systems is described by uncertain polynomials whose
coefficients depend linearly  on several parameters, but where each parameter may
occur simultaneously in several coefficients. Such an uncertain polynomial may look
like

p s q a q si
i

i

n
( , ) ( )=

=Â 1

with each coefficient a qi b g  an affine function of q . That is, for each i nŒ 0 1 2, , , ,Kl q,
there exist a column vector a i  and a scalar b i  such that

a q qi i
T

ib g = +a b
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Uncertain polynomials with the affine uncertainty structure form polytopes in the
space of polynomials. Similarly to the single parameter case such polynomials may
always be expressed as

p s q p s q p s q p s q p sn n( , ) ( ) ( ) ( ) ( )= + + + +0 1 1 2 2 L

This form is preferred in the Polynomial Toolbox. Thus, a polytope of polynomials
with n  parameters is always described by the n + 1 polynomials p s0 ( ) , p s1 ( ) , L,
p sn ( )  along with n  parameter bounding intervals [ , ]q q1 1

- + , [ , ]q q2 2
- + , K, [ , ]q qn n

- + . To
keep an invariant degree over the whole polytope it is usually assumed that
deg ( ) deg ( )p s p si0 ≥  for all i.

One reason why the affine linear uncertainty structure is so important is that it is
preserved under feedback interconnection. To see this, consider an uncertain plant

P s q
N s q

D s q
( , )

( , )

( , )
=

connected in the standard feedback configuration of Fig. 15 with a compensator

C s
N s

D s
C

C

( )
( )

( )
=

A simple calculation leads to the closed loop transfer function

P s q
N s q D s

N s q N s D s q D s
CL

C

C C

( , )
( , ) ( )

( , ) ( ) ( , ) ( )
=

+

If the plant has have an affine linear uncertainty structure then the closed-loop
transfer function has an affine linear uncertainty structure as well. Indeed, if we
write

N s q N s q N si i

i

l

( , ) ( ) ( )= +
=
Â0

1

and

D s q D s q D si i

i

l

( , ) ( ) ( )= +
=
Â0

1

then the closed-loop characteristic polynomial follows as
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D s q D s D s N s N s q D s D s N s N sCL C C i i

i

l

C i C( , ) ( ) ( ) ( ) ( ) [ ( ) ( ) ( ) ( )]= + + +
=
Â0 0

1

while the numerator of the closed-loop transfer function is

N s q N s D s q N s D sCL C i i

i

l

C( , ) ( ) ( ) ( ) ( )= +
=
Â0

1

Inspection shows that D s qC L ( , )  and N s qC L ( , )  have affine linear uncertainty
structures. In fact, every transfer function of practical interest has this structure.

The affine linear uncertainty structure is also (roughly speaking) preserved under
linear fractional transformation of s  and has many other interesting features.

Improvement over rectangular bounds. For the polytope of polynomials P  described
by (Barmish, 1996, p. 146)

p s q q q q s q q s q s s( , ) = - + + + + - + + + +1 2 2 1 2
2

2
3 42 2 1 2 4 2 1b g b g b g b g

with q1 0 5 2Œ - . ,  and q2 0 3 0 3Œ - . , . , we carry out two robust stability analyses.

Part 1: Conservatism of Overbounding. First replace p s q( , )  by the overbounding
interval polynomial p s q( , )  described by

p s q s s s s( , ) . , . . , . . , . . , .= + + + +0 9 4 6 0 7 1 3 2 7 8 3 0 4 1 62 3 4

Using the Kharitonov polynomials

pminus = pol([0.9 0.7 2.7 0.4 1],4);

pplus = pol([4.6 1.3 8.3 1.6 1],4);

[stable,K1,K2,K3,K4] = kharit(pminus,pplus); stable   

stable =

     0   

we conclude that p s q( , )  is not robustly stable. It is easy to verify that the third
Kharitonov polynomial is unstable:

isstable(K3)   

Example 6
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ans =

     0   

Part 2: Value Set Comparison. To begin with the second analysis, we express p s q( , )

as

p s q p s q p s q p s( , ) ( ) ( ) ( )= + +0 1 1 2 2

where

p s s s s s

p s s

p s s s s

0
2 3 4

1
2

2
2 3

2 4

1 2

2 2

( )

( )

( )

= + + + +
= +
= - + - +

The data are entered as

p0 = pol([2 1 4 1 1],4);

p1 = pol([1 0 2],2);

p2 = pol([-2 1 -1 2],3);

Qbounds = [-0.5 2; -0.3 0.3]   

Next we verify the critical precondition for application of the Zero Exclusion
Condition. Indeed, p s0 ( )  is a stable member of the given interval polynomial family
as shown by

isstable(p0)   

ans =

     1   

Next we generate 80 polygonal values corresponding to frequencies evenly spaced
between w = 0  and w = 2 :

ptopplot(p0,p1,p2,Qbounds,j*(0:0.025:2))

Within computational limits, we conclude from Fig. 19 that 0 œ p j Q( , )w  for all w £ 0 .
Hence, by the Zero Exclusion Condition we conclude that P  is robustly stable.
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Fig. 19. Extremal polygons

Fig. 20. Kharitonov rectangles
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It may also be illuminating to picture the Kharitonov rectangles for the overbounding
interval polynomial p s q( , ) :

khplot(pminus,pplus,0:0.025:2)

This command results in Fig. 20. It is clear that the Zero Exclusion Condition is
violated for the Kharitonov rectangles even though it holds for the polygons of the
previous plot.

Summarizing, working with the overbounding interval polynomial is inconclusive
while working with polygonal value sets leads us to the unequivocal conclusion that
p s q( , )  is robustly stable.

Robust stability degree design for a polytopic plant. Consider the plant transfer
function

N s q

D s q

q q s

q q s q s s

( , )

( , )

( ) ( )

( ) ( ) ( )
=

+ + +
+ + + + + -

1 1

2 1 2 2 2

1 2

1 2 2
2 3

with two uncertain parameters q1 0 2Œ[0, . ]  and q2 0 2Œ[0, . ] . The plant is to be
robustly stabilized with robust stability degree s = 0 9. .

Both the numerator and the denominator of the transfer function are uncertain
polynomials with a polytopic (affine) uncertainty structure. Write

N s q N s q N s q N s s q q s( , ) ( ) ( ) ( )= + + = + + +0 1 1 2 2 1 21b g
and

D s q D s q D s q D s s s s q s q s( , ) ( ) ( ) ( )= + + = + + - + + + -0 1 1 2 2
2 3

1
2

22 2 2 1 2 3e j e j b g
and enter the data:

D0 = 2+s+2*s^2–2*s^3;

D1 = 1+2*s^2;

D2 = -3*s;  

N0 = 1+s;

N1 = 1;

N2 = s;   

Example 7
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Qbounds = [ 0 0.2; 0 0.2 ]   

As the nominal plant

N s

D s

N s

D s

s

s s s

( , )

( , )

( )

( )

0

0

1

2 2 2

0

0
2 3

= =
+

+ + -

is unstable

isstable(D0)   

ans =

     0   

we stabilize it by placing the closed-loop poles at -2 , -3 , -4  and - ±2 j :

[Nc,Dc] = pplace(N0,D0,[-2,-2+j,-2-j,-3,-4])

Nc =

     128.2 + 115.9s + 73.3s^2

Dc =

    -4.1 - 7s - 0.5s^2   

Note that the nominal positions of the closed-loop poles well satisfy the required
stability degree s = 0 9. .

When the resulting controller

N s

D s

s s

s s

C

C

( )

( )
=

+ +
- - -

128 2 115 9 73 3

4 1 7 0 5

2

2

. . .

. .   

is connected with the uncertain plant the closed-loop characteristic polynomial
becomes uncertain but the polytopic structure is preserved. The characteristic
polynomial may be written as

p s q p s q p s0 1 1 2 2( ) ( ) ( )+ +

where

P0 = D0*Dc+N0*Nc, P1 = D1*Dc+N1*Nc, P2 = D2*Dc+N2*Nc   
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P0 =

     120 + 226s + 173s^2 + 67s^3 + 13s^4 + s^5

P1 =

     124.1 + 108.9s + 64.6s^2 – 14s^3 - s^4

P2 =

     140.5s + 136.9s^2 + 74.8s^3   

Recall that we require achieving a robustly stable system with stability degree 0 9. .
The polytopic family naturally has a member that is stable with at least the stability
degree required  (remember the roots of p s0 ( ) ) and we can test the motion of
polygonal value set p c q( , )  by sweeping c  along the shifted stability boundary
c j j= - + = - +s w w0 9. . Starting with values 0 4£ £w  we type

ptopplot(10*P0,10*P1,10*P2,Qbounds,-.9+j*(0:.01:4))

Fig. 21. Value sets

The plot of Fig. 21 seems to indicate that zero is excluded. To be completely confident,
we must zoom the picture to see the critical range 0 1£ £w :
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ptopplot(P0,P1,P2,Qbounds,-.9+j*(0:.01:1))

It is evident from Fig. 22 that 0 0 9œ - +p j q( . , )w  for all w  and, hence, the Zero
Exclusion Condition is verified. We conclude that the desired design specifications
are satisfied: The closed-loop system is robustly stable with robust stability degree
0.9.

Fig. 22. Zoomed value sets
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 7 Numerical methods for polynomial
matrices

Introduction

The algorithms that are used in the Polynomial Toolbox use different types of
numerical techniques. The techniques may be classified as follows:

• methods based on equating indeterminate coefficients

• polynomial reduction based on elementary row and column operations

• interpolation methods

• state space methods

• other methods

To learn quickly how the first four methods work, look at some easy examples.

Consider solving the scalar polynomial equation of the form

a s x s b s y s c s( ) ( ) ( ) ( ) ( )+ =

with a, b and c given polynomials, for the unknown polynomials x and y. For
simplicity we assume that deg a = deg b = deg c = 2. Then whenever the equation is
solvable there exists at least one solution x, y characterized by

deg , degx y£ £1 1

The equation may be solved by equating indeterminate coefficients, polynomial
reduction or interpolation as described below. In the Polynomial Toolbox this task is
done by the macro axbyc.

For a simple 2×2 polynomial matrix of degree 2

P s P P s P s( ) = + +0 1 2
2

consider the computation of its determinant

Example 1:
Scalar linear
polynomial
equation

Example 2:
Determinant of
a polynomial
matrix
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p s P s p p s p s p s p s( ) det ( )= = + + + +0 1 2
2

3
3

4
4

Note that p4 0π  if and only if P2  is nonsingular.

The determinant may be found by polynomial reduction, by interpolation or by state
space methods as described below. In the Polynomial Toolbox the computation of the
determinant is handled by the macro det.

Equating indeterminate coefficients

Let us see how the scalar linear polynomial equation may be solved by equating
indeterminate coefficients.

We begin by writing

a s a a s a s

b s b b s b s

c s c c s c s

( )

( )

( )

= + +

= + +

= + +

0 1 2
2

0 1 2
2

0 1 2
2

where the coefficients are all known. Likewise, we write

x s x x s

y s y y s

( )

( )

= +
= +

0 1

0 1

with the unknown coefficients x0 , x1 , y0  and y1 to be found.

Step 1. By expanding the expression xa + yb and equating coefficients of like powers
in the indeterminate variable s we obtain a set of linear equations of the form

x y x y

a a a

b b b

a a a

b b b

S

c c c0 0 1 1

0 1 2

0 1 2

0 1 2

0 1 2

0 1 2

0

0

0

0

0

L

N

MMMM

O

Q

PPPP
=

1 2444 3444

The matrix S has a highly structured form and is called the Sylvester resultant
matrix corresponding to the polynomials a and b.

Example 1:
Scalar linear
polynomial
equation
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Step 2. Solve the constant matrix equation to obtain the unknown coefficients of the
polynomials x and y and, hence, the polynomials themselves. If the set of linear
equations is not solvable then the polynomial matrix has no solution.

Discussion. The procedure is quite natural. It applies whenever

• the degree of the expected solution is known, and

• the constant matrix system is linear, of a reasonable size and easily constructed.
Then it may efficiently be solved by any standard numerically stable linear
system solver.

The knowledge of the resulting degree is crucial. It guarantees that the
correspondence between the polynomial equation and the linear system is one-to-one.

If the degree is not known then it is necessary to proceed heuristically. Just try a
large enough degree and check whether or not the resulting linear system is solvable.
If it is then the desired polynomial solution has been found. If it is not then nothing
can be concluded. There may or may not exist polynomial solutions of higher degree.

In the Polynomial Toolbox, the method of equating indefinite coefficients is employed
in equation solvers such as axb, axbyc, axybc, axxa2b.

For further reading see the Bibliography.

Polynomial reduction

To solve the scalar linear polynomial equation by polynomial reduction we proceed as
follows.

Step 1. Use the polynomials a and b to form the polynomial matrix

a s

b s

( )

( )

1 0

0 1

L
NM

O
QP

Use elementary row operations to reduce the matrix until the entry in the lower left
corner equals 0. After completion the matrix has the form

g s p s r s

q s t s

( ) ( ) ( )

( ) ( )0

L
NM

O
QP

Example 1 :
Scalar linear
polynomial
equation
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The polynomial g is the greatest common divisor of a and b while p, q, r and t are
coprime polynomials that satisfy

p s a s q s b s g s

r s a s t s b s

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ =
+ = 0

Step 2. Extract g from the right hand side polynomial c to obtain a polynomial c  so
that

c s c s g s( ) ( ) ( )=

If this is not possible then stop because the polynomial equation is unsolvable.

Step 3. Take

x s c s p s

y s c s q s

( ) ( ) ( )

( ) ( ) ( )

=
=

to be the desired solution. Moreover, all solutions to the polynomial equation may be
expressed as

x s c s p s r s u s

y s c s q s t s u s

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

= +
= +

with u an arbitrary free polynomial parameter.

To compute the determinant of the polynomial matrix P by polynomial reduction we
proceed in the following way.

Step 1. Using elementary row operations, transform the given matrix P into a lower
triangular matrix of the form

t s

t s t s

11

21 22

0( )

( ) ( )

L
NM

O
QP

Step 2. Because elementary operations preserve the determinant the desired result
may immediately be calculated as

det ( ) ( ) ( )P s t s t s= 11 22

Discussion. The polynomial reduction method is a traditional method of real
“polynomial flavor.” A typical feature of this method is that no attention is paid to the
degree of the polynomials, which may grow alarmingly during the computation.

Example 2:
Computation of
the determinant
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Unfortunately, the method is not numerically stable and, if the given data are “bad”
then the performance of the method heavily depends on effective zeroing.

Finally, the method turns out to be rather slow when programmed in MATLAB.

In the Polynomial Toolbox polynomial reductions are employed in a few functions
such as hermite, pdg, and smith. The method is avoided whenever possible.

For further reading see the Bibliography.

Interpolation

Interpolation is a very effective technique.

The “interpolation way” to determine the unknown polynomials x and y from the
equation ax + by = c consists of the following steps.

Step 1. For the problem at hand, choose four distinct complex interpolation points

s s s s1 2 3 4, , ,

and substitute them into the polynomials a, b and c to obtain the scalar constants

a s a s a s ii i i( ), ( ), ( ), , , ,= 1 2 3 4

Step 2. Form the linear equation system

x y x y

a s a s a s a s

b s b s b s b s

s a s s a s s a s s a s

s b s s b s s b s s b s

p s p s p s p s0 0 1 1

1 2 3 4

1 2 3 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 2 3 4

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

L

N

MMMM

O

Q

PPPP
=

Step 3. Solve the equation system for the desired coefficients of the polynomials x and
y.

Quite similarly the determinant may be computed by interpolation.

Step 1. For the problem at hand, choose five distinct interpolation points

s ii , , , , ,= 1 2 3 4 5

and substitute them into the given matrix P to obtain the five constant matrices

Example 1:
Linear
polynomial
equation

Example 2:
Computation of
the determinant
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P s ii( ), , , , ,= 1 2 3 4 5

Step 2. Calculate the determinants

p s P s ii i( ) det ( ), , , , ,= = 1 2 3 4 5

Step 3. Recover the desired coefficients of

p s P s p p s p s p s p s( ) det ( )= = + + + +0 1 2
2

3
3

4
4

by solving the linear equation system

p p p p p

s s s s s

s s s s s

s s s s s

s s s s s

V

p s p s p s p s p s0 1 2 3 4

1 2 3 4 5

1
2

2
2

3
2

4
2

5
2

1
3

2
3

3
3

4
3

5
3

1
4

2
4

3
4

4
4

5
4

1 2 3 4 5

1 1 1 1 1

=

L

N

MMMMMM

O

Q

PPPPPP

=

1 24444 34444

( ) ( ) ( ) ( ) ( )

The matrix V is called a Vandermonde matrix.

Discussion. Interpolation for polynomial matrix computations is quite modern and
efficient. Obviously, the larger the part of computation is that is done with constant
matrices the more efficient the method is.

Like other methods, it requires the resulting degrees to be correctly determined a
priori. If no justified guess is available then the method becomes quite heuristic. If an
incorrect degree is assumed then neither solvability of the linear equation system
guarantees the existence of a solution to the polynomial solution nor unsolvability of
the linear system implies the non-existence of a solution to the polynomial problem.

The Vandermonde matrix appearing in the linear equation system often is ill
conditioned. In many cases this does not matter as a special “Vandermonde solver”
may be employed. If this is not possible then the condition number limits the problem
size.

In the Polynomial Toolbox the interpolation method is encountered in routines such
as det and all linear polynomial matrix equation solvers..

For further reading see the Bibliography.
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State space methods

To compute the determinant an indirect method may be used based on “state space”
notions from linear system theory.

Step 1. From the matrix coefficients of

P s P P s P s( ) = + +0 1 2
2

form the pair of generalized block companion matrices

E
I

P
A

I

P P
=
L
NM

O
QP =

- -
L
NM

O
QP

¥ ¥ ¥2 2

2

2 2 2 2

0 1

0

0

0
,

This pair defines a descriptor system Ex Ax& = .

Step 2. Compute the generalized eigenvalues corresponding to the matrices E and A,
that is, the roots of det( )lE A- . Remove the infinite roots and denote the remaining
finite roots as

s ii , , , ,= 1 2 3 4

These roots equal the finite roots of p(s).

Step 3. Recover p(s) = det P(s) from its finite roots using the formula

p s c s s s s s s s s( ) ( )( )( )( )= - - - -1 2 3 4

Discussion. There are state space counterparts to many polynomial problems. As
quite advanced numerical procedures have been developed for state-space problems
the detour via systems theory is sometimes rewarding.

In the Polynomial Toolbox, state-space-like methods may be found in root  and spf.

For further reading see the Bibliography.

Example 2:
Computation of
the determinant
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 8 Demos and Applications

Introduction

In this chapter we present several demos and applications that illustrate the wide
variety of problems that may be solved with the Polynomial Toolbox. The demos
successively deal with

• achievable feedback performance

• computing the covariance function of an ARMA process

• control of a batch process

• the polynomial solution of the SISO mixed sensitivity problem, and

• applications to behavioral system theory

Achievable feedback performance

Many of the properties of the MIMO feedback loop of Fig. 23 are characterized by its
sensitivity matrix

S I PC= + -( ) 1

and complementary sensitivity matrix

T I PC PC= + -( ) 1

These properties include the sensitivity of the feedback loop to disturbances and
measurement noise, its response to reference inputs, and its stability and
performance robustness (Kwakernaak, 1995).

H •  optimization is a powerful tool for shaping the sensitivity functions so that all the
design requirements are satisfied. In particular the mixed sensitivity problem is a
useful design paradigm. The Polynomial Toolbox contains the routine mixeds for
solving SISO mixed sensitivity problems.

Introduction



156 Demos and Applications

Fig. 23. LTI feedback system

Especially for complex design problems it is highly recommended to devote some time
to exploratory analysis before attempting the actual design. This exploratory analysis
serves to reveal the inherent possibilities and limitations of the control system. Part
of this exploratory analysis always is the computation of the poles and zeros of the
plant. Any right-half plane zeros and poles that are present impose essential
constraints on the closed-loop bandwidth that may be achieved or is necessary (again
see Kwakernaak, 1995, for a review).

For MIMO systems the open-loop pole and zero locations do not fully reveal the
design limitations. For instance, in the SISO case the presence of a nearly cancelling
pole-zero pair in the right-half plane predicts poor performance, with high peaks in
the sensitivity functions. The closer the pole and zero are, the higher the peak. In the
case of MIMO systems the pole of such a pair may occur in a different “channel” than
the zero so that the pole and zero do not interact and their adverse effects are not
amplified such as in the SISO case.

To reveal the a priori design limitations more fully it may be useful to compute the
minimal peak values of the • -norms of the sensitivity functions S and T. This is the
purpose of this demo. Polynomial techniques lend themselves very well for the
computation of these bounds and explicitly reveal their relation to the open-loop zero
and pole locations. The peak values themselves are lower bounds for the peak values
that are obtained for more realistic designs matched to the design specifications.

For the SISO case the minimal peak values are derived in Kwakernaak (1985). We
assume that the plant has the transfer function

P s
N s

D s

N s N s

D s D s
( )

( )

( )

( ) ( )

( ) ( )
= = + -

+ -

The polynomial N is the plant numerator polynomial and the polynomial D is the
plant denominator polynomial. D+  and N +  are polynomials whose roots have strictly

SISO minimal
peak values for
the sensitivities
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positive part and hence lie in the open right-half complex plane. The roots of the
polynomials D-  and N -  all have nonpositive real part.

The minimal peak value of the • -norm of the sensitivity function S in the SISO case
equals the minimal peak value of the magnitude of the sensitivity function | ( )|S jw ,
w Œ R . This minimal norm may be found by solving a special H •  optimization
problem, namely that of minimizing S • .  The solution of this minimum sensitivity
problem follows by solving the polynomial equation

1

g
D X D X N Y+
*

+
*

+ + + += +

for the scalar g  and the polynomials X +  and Y+ . If D+  has degree d and N +  has
degree n then X +  has degree n - 1 and Y+  has degree d - 1 . As we shall see this
equation is equivalent to a generalized eigenvalue problem. The compensator that
solves the minimum sensitivity problem has the transfer function

C s
D s Y s

N s X s
opt ( )

( ) ( )

( ) ( )
= - +

- +

If the plant is strictly proper then C opt  is nonproper. The optimal sensitivity function
is given by

S s
D s X s

D s X s
opt ( )

( ) ( )

( ) ( )
= + +

+
*

+
*g

Sopt  has the so-called equalizing property, that is, | ( )|S jopt w  is constant for all real w
and equals | |g . The minimal peak value hence is | |g .

The properties of the minimum peak value may be summarized as follows:

• If the plant has no right-half plane zeros then Sopt •
= 0 , which is achieved by

an infinite-gain compensator.

• If the plant has no right-half plane poles but at least one right-half plane zero
then Sopt •

= 1 , which is obtained by taking C s( ) = 0 .

• If the plant has at least one right-half plane zero and at least one right-half plane
pole then Sopt •

> 1 .

• If the plant has a coinciding right-half plane pole-zero pair then Sopt •
= • .
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For the minimal peak value of the complementary sensitivity function T similar
results hold. The critical equation that needs to be solved now is

1

g
N Y D X N Y+

*
+
*

+ + + += +

and the optimal complementary function is

S s
N s Y s

N s Y s
opt ( )

( ) ( )

( ) ( )
= + +

+
*

+
*g

This is the summary of the results for the minimization of T • :

• If the plant has no right-half plane poles then Topt •
= 0 , which is achieved by an

infinite-gain compensator.

• If the plant has no right-half plane zeros but at least one right-half plane pole
then Topt •

= 1 , which is obtained by taking C s( ) = 0 .

• If the plant has at least one right-half plane zero and at least one right-half plane
pole then T Sopt opt• •

= > 1 .

• If the plant has a coinciding right-half plane pole-zero pair then Topt •
= • .

Note that minimal sensitivity and minimal complementary sensitivity are not
simultaneously achieved by the same compensator.

The only situation where some serious computation needs to be done once the open-
loop poles and zeros are available arises when the plant has both right half plane
zeros and poles. We then need to solve the polynomial equation

1

g
D X D X N Y+
*

+
*

+ + + += + (1)

The solution of this problem provides the minimal peak value of both the sensitivity
and the complementary sensitivity function. If D+  has degree d and N +  has degree n
then X +  has degree n - 1 and Y+  has degree d - 1 .  Write X +  and Y+  in terms of their
coefficients as

X s X X s X s Y s Y Y s Y sn
n

d
d

+ -
-

+ -
-= + + + = + + +( ) , ( )0 1 1

1
0 1 1

1L L

and introduce the column vectors

SISO
computation of
the minimum
peak value
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x

X

X

X

y

Y

Y

Yn d

=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
- -

0

1

1

0

1

1

L L
,

Then it may be verified that the polynomial equation (1) we need to solve is
equivalent to the matrix equation

1
1 1 1g

S D J x S D x S N yn d n n d n d+ - +
*

+ - + + - += +( ) ( ) ( ) (2)

S Am ( )  denotes the (column) Sylvester resultant matrix of order m of the polynomial
A, and J n  is the matrix

J n
n= - - - -diag( , , , , , ( ) )1 1 1 1 1 1L

To show that (2) amounts to a generalized eigenvalue problem we rearrange it in the
form

1
01 1 1g

S D J
x

y
S D S N

x

y
n d n n d n d+ - +

*
+ - + + - +

L
NM

O
QP =

L
NM

O
QP( ) ( ) ( )

This is equivalent to the equation

Az Bz= l (3)

where

A S D S N B S D J

z
x

y

n d n d n d n= =

=
L
NM

O
QP =

+ - + + - + + - +
*

1 1 1 0

1

( ) ( ) , ( )

, l
g

We need the solution of (3) that corresponds to the real eigenvalue l  with the
smallest size. The minimal peak sensitivity equals the inverse of the magnitude of
the smallest eigenvalue.

We develop a new Polynomial Toolbox function minsens that computes the minimal
peak value of the sensitivity functions. Its input arguments are the numerator
polynomial N and the denominator polynomial D of the SISO plant.

As we develop the macro we test it for the plant with transfer function

The macro
minsens



160 Demos and Applications

P s
s s

s
( )

/
=

+ -
-

2

2

2 3

4 9

We input the data accordingly as

N = s^2+2*s-3;

D = s^2-4/9;   

The first few lines of the m-file are

% minsens

% The function

%    p = minsens(N,D)

% computes the minimum peak value of the sensitivity and

% complementary sensitivity functions for the SISO plant

% with transfer function P = N/D that may be achieved by

% feedback

function p = minsens(N,D)

This provides the help text, and declares the function, its input arguments and its
output arguments.

Normally a sequence of tests needs to follow this preamble to check whether N and D
are really scalar polynomials but we dispense with this for the purpose of this demo.

Given the numerator and denominator polynomials we now compute their roots and
use these to define the polynomials N +  and D+ :

% Compute the polynomials Nplus and Dplus whose roots are

% the roots of N and D, respectively, with positive real parts

rootsN = roots(N); rootsNplus = rootsN(find(real(rootsN)>0));

Nplus = mat2pol(poly(rootsNplus));

rootsD = roots(D); rootsDplus = rootsD(find(real(rootsD)>0));
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Dplus = mat2pol(poly(rootsDplus));

keyboard

The MATLAB command poly is used to construct the polynomials Nplus and Dplus
from their roots after which they are converted to Polynomial Toolbox format with
the Toolbox command mat2pol. While developing the macro we end it with the
keyboard command so that the results at that point may be inspected. In the
present case typing the command

minsens(N,D)

results in the output

K»

Editing this to

K» Nplus, Dplus

and ending the line with a return results in the output

Nplus =

    -1 + s

Dplus =

    -0.67 + s

We now include two tests to see whether the peak value is either 0 or 1.

% Check whether p = 0 or p = 1

if isempty(Nplus)

   p = 0; return

elseif isempty(Dplus)

   p = 1; return

end

For the example that we are pursuing both tests fail so we are in the situation where
the generalized eigenvalue problem needs to be solved. We first set it up.
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% Solve the generalized eigenvalue problem

A = [ sylv(Dplus,'col',n-1) sylv(Nplus,'col',d-1) ];

J = 1;

for i = 2:n

   J(i,i) = -1*J(i-1,i-1);

end

B = [ sylv(Dplus','col',n-1)*J zeros(n+d,d) ];

Only one more line is needed to complete the macro:

p = 1/min(abs(eig(A,B)));

Calling

minsens(N,D)   

results for the example at hand in

ans =

    5.0000   

We test a few more examples

• No right-half plane zeros:

minsens(s+1,s-1)   

ans =

     0

• One right-half plane zero but no right-half plane poles:

minsens(s-1,s+1)   

ans =

     1

• Coinciding right-half plane pole-zero pair:
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minsens(s-1,s-1)   

Warning: Divide by zero.

ans =

   Inf

For the MIMO case no simple results to compute the minimal peak sensitivity such
as for the SISO case are available. The only option seems to be to compute a full
solution of the minimum sensitivity problem. The Polynomial Toolbox provides the
routine dssrch for this purpose. It solves the standard H •  optimization problem, is
numerically well-conditioned, fast, computes optimal solutions accurately and
reliably, and can handle nonproper generalized plants as well as problems where the
optimal compensator is nonproper. The routine requires the generalized plant of the
standard problem to be in descriptor form. The Toolbox supplies the necessary
conversion routines from polynomial matrix fraction form to descriptor form and vice-
versa.

Fig. 24. Minimum sensitivity problem

To bring the minimum sensitivity problem into standard form we consider the block
diagram of Fig. 24. When the loop is opened the signals are related as

z

y

I P

I P

v

u

L
NM

O
QP = -

L
NM

O
QP
L
NM
O
QP

This defines the generalized plant of the standard problem as

G
I P

I P
=

- -
L
NM

O
QP

If the plant P has the left coprime representation P D N= -1  then the generalized
plant has the left coprime representation

MIMO minimal
peak values for
the sensitivities
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G
D

I I

D N
=
L
NM

O
QP

L
NM

O
QP

-
0

0 0

1

After converting this left coprime fraction to descriptor form the routine dssrch may
be called to solve the H •  optimization problem.

We generate a random 2 2¥  plant P D N= -1  by the commands

D = prand([1;2],2,2,'int')   

D =

    -8 + s      1 - 6s

     6 + 6s     2 + s - s^2

N = prand([1;2],2,2,'int')

N =

    -3 + 11s    -1 + s

     5          -4 + s - 7s^2   

The zeros and poles of the plant are

Zeros = roots(N)   

Zeros =

   0.0379 + 0.8051i

   0.0379 - 0.8051i

   0.3399    

Poles = roots(D)   

Poles =

   45.5167

   -1.0000

    0.4833

MIMO example
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Inspection shows that the plant has both right-half plane poles and zeros so by
analogy to the SISO problem we expect a minimum peak sensitivity of at least 1.

We first convert the generalized plant into descriptor form:

Dg = [D zeros(2,2); eye(2,2) eye(2,2)];

Ng = [D N; zeros(2,2) zeros(2,2)];   

[A,B,C,D,E] = lmf2dss(Ng,Dg)   

A =

     8   -47     0

    -6    37     1

    -6    38     0

B =

         0         0   85.0000  336.0000

         0         0  -66.0000 -264.0000

         0         0  -61.0000 -276.0000

C =

     1    -6     0

     0    -1     0

    -1     6     0

     0     1     0

D =

    1.0000         0   11.0000   43.0000

         0    1.0000         0    7.0000

   -1.0000         0  -11.0000  -43.0000

         0   -1.0000         0   -7.0000
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E =

     1     0     0

     0     1     0

     0     0     1

The solution of the H •  problem is initiated by typing

 [Ak,Bk,Ck,Dk,Ek,gopt,clpoles] = dssrch(A,B,C,D,E,2,2,0.5,5)   

The resulting output is

Ak =

    0.5209    1.0787

   -0.9706   -0.1370

Bk =

   -0.9241   -9.2055

    1.7746   -0.6237

Ck =

    0.0410   -0.0035

   -0.1003    0.0981

Dk =

   -0.3750    0.0976

    0.0547   -0.0142

Ek =

     1     0

     0     1

gopt =

    1.1595
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clpoles =

 -45.5167 + 0.0000i

  -0.1755 - 0.9418i

  -0.1755 + 0.9418i

  -0.4833 - 0.0000i

  -1.0000    

We observe that the minimal norm is 1.1595. The fact that this number is not all that
much greater than 1 indicates that a design without exaggerated peaking of the
sensitivity functions is possible as long as the design specifications — in particular
the desired bandwidth — are compatible with the limitations imposed by the right-
half plane zeros and poles of the plant.

Computing the covariance function of an ARMA process

The problem of computing the covariance function for a given multivariable ARMA
process is often encountered in estimation, filtering, stochastic control and
communications.

Consider the ARMA process

A z y t B z e t t( ) ( ) ( ) ( ),= Œ Z

where z is the shift operator defined by zy t y t( ) ( )= + 1 . A and B are square polynomial
matrices in z with possibly complex-valued coefficients. The random sequence e is
white noise so that

Ee t e t
t s

I t s
H( ) ( ) =

π
=

RST
0 for 

for 

The superscript H indicates the complex conjugate transpose. A is assumed to be
monic (that is, its leading coefficient matrix is nonsingular) with all its roots strictly
inside the unit circle. Under these assumptions the ARMA process y is well-defined
and asymptotically stationary.

The covariance matrix function that is to be found is defined by

Introduction
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r Ey t y t
t

H( ) lim ( ) ( )t t= +
Æ•

The covariance matrix function may be computed by inverse z-transformation of the
spectral density matrix

F( ) ( ) ( ) ( / ) ( / )z A z C z C z A zH H
= - -1 11 1e j

The computation of the covariance function (Söderström, Jezek and Kucera, 1997)
follows by partial fraction expansion of the spectral density in the form

F( ) ( ) ( ) ( / ) ( / )z A z X z X z A zH H
= +- -1 11 1e j

This partial fraction expansion is equivalent to solving the symmetric two-sided
polynomial matrix equation

C z C z X z A z A z X zH H H( ) ( / ) ( ) ( / ) ( ) ( / )1 1 1= +

for the polynomial matrix X. Once X is available we may expand

A z X z r z- -

=

•

=Â1

0

( ) ( ) $( )t t

t

by long polynomial division. Inspection of the right-hand side shows that

r

r

r r

r

H

H

( )

$( )

$( ) $ ( )

$ ( )

t
t t

t
t t

=
>

+ =
- <
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for 
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0
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0

To illustrate the procedure first consider a scalar ARMA process y given by

A z z z

C z

( ) . .

( )

= - +
=

1 2 4 1 43

1

2

We develop a Polynomial Toolbox function called covf, which takes the polynomial
matrices A and C as input arguments and has the desired covariance function r as
output. Because a macro with the same name exists in the System Identification
Toolbox we need to overload this function. Practically this means that the macro is
placed in the pol subdirectory of the main Polynomial Toolbox directory. When

Algorithm

Example 1: A
scalar process
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MATLAB detects that covf is called with one or more polynomial objects as input
argument then it uses the version of covf that is located in this subdirectory.

The first lines of the macro are

% covf

%

% This function computes the covariance function

% of the discrete-time ARMA process y defined by

%

% A(z)y(t) = C(z)e(t)

%

% with e standard white noise.

function r = covf(A,C,n)

The third input argument n is the number of time shifts over which the covariance
function is required.

Normally at this point each Polynomial Toolbox function performs a number of
correctness checks on the input arguments. We dispense with these for the purpose of
this demo.

To solve the symmetric polynomial equation

X z A z A z X z C z C zH H H( ) ( / ) ( ) ( / ) ( ) ( / )1 1 1+ =

we use the Toolbox function xaaxb. Only one line is needed:

% Solve the two-sided polynomial matrix equation

X = xaaxb(A,C*C');

For the example at hand the intermediate solution at this point is

X =

The macro covf
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    -20 + 8.3z + 28z^2

From the given polynomial A and the computed polynomial X the desired covariance
function is recovered by "long division" of X A-1 . For this purpose the macro
longldiv is available. Given the square polynomial matrix D and the polynomial
matrix N this function finds the first n + d + 1 terms of the Laurent series expansion

D z N z Q z Q z Q z R R z R z R zn
n

n
n

d
-

-
- - - -= + + + + + + + + +1

1
1

1 0 1
1

2
2 1( ) ( ) L L L

If the fraction D N-1  is proper then the macro returns the first d + 1  terms (with d an
input parameter) of the expansion

D z N z R R z R z R zd
- - - -= + + + + +1

0 1
1

2
2 1( ) ( ) L L

This is exactly what we need. Thus, the appropriate command is

% Apply long division to X\A

[Q,R] = longldiv(X,A,n);

R is returned as a polynomial matrix in the variable z -1  of degree n.  For convenience
we also return the desired covariance function as a polynomial in this variable:

% Construct the covariance function

r = R;

r{0} = r{0}+r{0}';

The macro is now complete and we may apply it to the example:

r = covf(1-2.4*z+1.43*z^2,1,40);

The resulting covariance function r may be plotted using standard MATLAB

commands:

plot(0:40,r{:},'o')

title('Covariance function - Example 1')

xlabel('tau'), ylabel('r'), grid on

Fig. 25 shows the plot of the covariance function.
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Fig. 25. Covariance function of the ARMA process of Example 1

As another example consider the computation of the covariance matrix function of the
two-variable ARMA process y defined by

A z
z

z
C z( )

.
, ( )=

-
-

L
NM

O
QP =

L
NM

O
QP

1 2 0

6 1 2 5

1 0

0 1

As our newly created function is ready for multivariable processes we may use it as it
is after defining the data:

A = [1-2*z 0; 6 1-2.5*z]; C = eye(2,2);

r = covf(A,C,10);

The output r now is a 2 2¥  polynomial matrix of degree 10. The coefficients r{i}, i = 1,
2, L, 10, constitute the desired covariance function. They may be plotted in a single
frame by the following sequence of standard MATLAB commands that we include at
the end of the macro covf:

% Plot the covariance function

figure; clf

k = length(C);

Example 2:
Two-variable
ARMA process
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for i = 1:k

   for j = 1:k

      subplot(k,k,(i-1)*k+j)

      plot(0:n,r{:}(i,j),'o')

      grid on; xlabel('tau')

   end

end

The resulting plot is shown in Fig. 26. The subplot in position (i, j) shows the scalar
covariance function r y t y tij i j( ) lim cov[ ( ), ( )]t t

t
= +

Æ•
.

Fig. 26. Covariance function of the ARMA process of Example 2
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Control of a batch process

Many photographic films and papers are manufactured in a batch-like mode. In this
mode batches of sensitized material are made up and then coated onto a base. To
guarantee that the photographic properties are kept within limits, strips of product
are regularly sent to testing for assessment. If the product is drifting off aim then it
is possible to add dye or change the laydown to move the product back on target.

However, there frequently are more outputs than “control knobs” to use for
adjustment, and the inputs frequently affect many outputs simultaneously. Testing
delay, more outputs than inputs, the desire for a first-order return rather than a step
return to target for some products, and stochastic disturbances make this an
interesting control problem.

Below is the transfer function plus disturbance model for a process like the one
described above.
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Here z -1  is the delay operator and the v ti ( )  are disturbance signals.

The three outputs y1, y2  and y3  successively are the deviations from aim of
photographic speed, contrast, and upper density point. The two inputs u1  and u2  are
dye and laydown changes from preset starting values, and the delay of three accounts
for the zero order hold and testing delay.

The three disturbance models are first order integrated moving average, first order
integrated autoregressive, and first order integrated moving average, respectively.

We look for a feedback controller that

• reduces the effect of random disturbances, and

• eliminates the effect of long term drifts in the disturbances

Introduction

Design targets
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A useful control design approach is the Internal Model Control (IMC) approach
discussed in MacGregor and Harris (1987).  Fig. 27 shows the arrangement.

The control law H for this problem follows by the minimization of a mean square
error criterion of the form

E e t Q e t u t Q u tT T( ) ( ) ( ) ( )1 2+ — —e j
E denotes the expectation, e(t) is the deviation of the output y(t) from its set point,
and — = - -u t u t u t( ) ( ) ( )1  is the incremental control action.  Q1  and Q2  are weighting
matrices.

Fig. 27. Internal Model Control

The control is computed by a polynomial algorithm. To this end, the plant-
disturbance model is rendered as

y t G z u t D tm( ) ( ) ( ) ( )= +-1

with D(t) the effect of the disturbances on the output y. The process model G m  is
described by the right polynomial matrix fraction

G z L z R zm ( ) ( ) ( )- - - -=1 1 1 1

with L and R polynomial matrices in the delay operator z -1 . The disturbance model
is taken as

D t z z v td( ) ( ) ( ) ( )= —- - - -q 1 1 1F

with v a column vector of white noise inputs. The quantities q  and F  are polynomial
matrices in the delay operator, with F  diagonal, and

Theory

Process and
disturbance
models
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— = - -d dz I( )1 1

The first step of the algorithm is to find the approximate inverse model

~
( ) ( ) ( )G z R z zm

- - - - -=1 1 1 1 1G

for the plant. The polynomial matrix G( )z -1  follows by the spectral factorization

G G* - - * - - *= + — —( ) ( ) ( ) ( ) ( )z z L z Q L z Qd d1 1 1
1

1
2

The superscript * denotes the adjoint, that is,

G G* - =( ) ( )z zT1

The spectral factor G( )z -1  needs to have all its roots outside the unit circle.

The controller H may now be expressed as

H z G z F z F z T z zm( )
~

( ) ( ), ( ) ( ) ( )- - - - - - - -= =1 1 1 1 1 1 1 1q

where the polynomial matrix T, together with the polynomial matrix P, is the
solution of the two-sided equation

L z Q z z T z zP z zd* - - * - - * - -= + —( ) ( ) ( ) ( ) ( ) ( )1
1

1 1 1 1 1q G F

To apply the algorithm to the batch control problem we need to obtain the process
and disturbance models in the required form. Inspection of
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Furthermore, writing

Algorithm

Application to
the batch
process
problem
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The weighting matrices, finally, are selected as

Q Q1 2
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The first step of the computation is to define the input data. Thus, the first few lines
of the script demoB.m are

% demoB

% Script for the demo "Control of a batch process"

% Define the data

L = [-77*z^-3 0.33*z^-3; 0 0.03*z^-3; 0 0.1*z^-3];

R = eye(2,2);

theta = diag([1-0.6*z^-1 1 1-0.55*z^-1]);

Computation
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Phi = diag([1 1-0.5*z^-1 1]);

d = 1;

Q1 = diag([0.01 8 2.25]);

Nabla = (1-z^-1);

The first computational step is to determine the polynomial matrix G   by spectral
factorization:

% Spectral factorization

Gamma = spf(L'*Q1*L);

The result is

Gamma

Constant polynomial matrix: 2-by-2

Gamma =

     7.7        -0.033

     0.00074     0.17

The next computational step is to solve the two-sided matrix equation  

L z Q z z T z zP z zd* - - * - - * - -= + —( ) ( ) ( ) ( ) ( ) ( )1
1

1 1 1 1 1q G F (4)

for the matrices T and P. For this we use the routine axybc. This solves the two-
sided polynomial matrix equation

AX YB C+ =

To turn (4) into a polynomial matrix equation we need to multiply it by a suitable
power n of z -1  so that z L zn- * -( )1  and z zn- * -G ( )1  both are polynomial and also
U z z P zn( ) ( )- - + * -=1 1 1  is a polynomial matrix.

Choosing n = 3 we have

% Solution of the two-sided equation

n = 3;

Spectral
factorization

Solution of the
two-sided
equation



178 Demos and Applications

A = z^-n*Gamma';

B = Nabla^d*Phi;

C = L'*Q1*theta;

[T,U] = axybc(A,B,C);

T turns out to be 2×3 matrix of degree 1, as predicted by the theory (MacGregor and
Harris, 1987):

T =

    -0.04        -0.00025 + 0.00012z^-1    -5.6e-005

    -3.8e-006     2.6 - 1.2z^-1             0.59

The controller transfer matrix is

H z G z F z R z z T z z

z z

m( )
~

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

- - - - - - - - - -

- - -

= =

=

1 1 1 1 1 1 1 1 1 1

1 1 1

G q

f q

where

f( ) ( ) ( ) ( )z R z z T z- - - - -=1 1 1 1 1G

is polynomial because G  is a constant matrix. We compute the controller as

% Compute the controller H = phi/theta

phi = R/Gamma*T;

The result is

phi =

    -0.0052       0.065 - 0.03z^-1     0.015

    -1.3e-016     15 - 7.1z^-1         3.4

We study the effect of disturbances D(t) at the plant output such that

y t G z u t D tm( ) ( ) ( ) ( )= +-1

 The controller

Response to
disturbances
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The closed-loop response to the disturbances D(t) follows from the sensitivity matrix
S:
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It is not difficult to find from the block diagram of Fig. 27 that if the plant model
exactly matches the plant then

S z I G z H zm( ) ( ) ( )- - -= -1 1 1

It follows that

S z I L z R z R z z T z z
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z z
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q q

y q

where

y q( ) ( ) ( ) ( ) ( )z z L z z T z- - - - - -= -1 1 1 1 1 1G

Thus we add the lines

% Compute the sensitivity matrix S = psi/theta

psi = theta-L/Gamma*T;

The Control Toolbox and even more SIMULINK are very well equipped to compute, plot
and manipulate time responses. We stay within the confines of the Polynomial
Toolbox, however, and use long polynomial division to compute the impulse and step
responses to disturbances (see the demo "Computing the covariance function of an
ARMA process".)

% Compute and plot the disturbance impulse response matrix r

% Apply long division to psi/theta

n = 10;

[q,r] = longrdiv(psi,theta,n);

Disturbance
impulse and
step responses
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% Plot the data

figure; clf

k = length(r);

for i = 1:k

   for j = 1:k

      subplot(k,k,(i-1)*k+j)

      plot(0:n,r{:}(i,j))

      grid on; axis([0 n -1.5 1.5])

   end

end

MATLAB produces the plot of Fig. 28 for the impulse response matrix. The step
responses may be computed similarly and are shown in Fig. 29.

% Compute and plot the disturbance step response matrix s

% Apply long division to (psi/theta)*1/(1-z^-1)

n = 10;

[q,s] = longrdiv(psi,theta*(1-z^-1),n);

% Plot

figure; clf

k = length(s);

for i = 1:k

   for j = 1:k

      subplot(k,k,(i-1)*k+j)

      plot(0:n,s{:}(i,j))

      grid on; axis([0 n -1.5 1.5])
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Fig. 28. Disturbance impulse response matrix

Fig. 29. Disturbance step response matrix
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   end

end

Inspection of the step response matrix shows this:

• The (1,2) and (1,3) entries of the step response matrix are identical to zero. This
means that the first output is insensitive to the second and third components of
the disturbances.

• Likewise, the (2,1) and (3,1) entries are zero. This means that the second and
third outputs are insensitive to the first component of the disturbance.

• All nonzero entries show a dead time of three time steps. This is a consequence of
the dead time of the process.

• The step response in the (1,1) entry eventually goes to zero. This means that
constant disturbances are suppressed in this channel.

• The step responses in the remaining zero entries do not approach zero, which
means that constant disturbances in the second and third channel are not
suppressed. The reason for this is that there are three components to the
disturbance but only two control inputs so that a full degree of freedom is lacking.
The resulting loss in performance is divided between the second and third
channels. The balance of this division may be shifted by adjusting the entries of
the weighting matrix Q1 .

Polynomial solution of the SISO mixed sensitivity H-infinity problem

Mixed sensitivity optimization is a powerful design tool for linear single-degree-of-
freedom feedback systems. It allows simultaneous design for performance and
robustness, and relies on shaping the two critical closed-loop sensitivity functions
with frequency dependent weights.

To obtain satisfactory high-frequency roll-off nonproper weighting functions may be
needed. These cannot be directly handled in the conventional state space solution of
the H-infinity problem. Nonproper weighting functions present no problems in the
frequency domain solution of the H-infinity problem. The frequency domain solution
may be implemented in terms of polynomial matrix manipulations.

Assessment

Synopsis
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We present the mixed sensitivity problem and its solution for single-input-single-
output plants. Step by step the Toolbox function mixeds is developed that
implements the algorithm. A simple but relevant example is used for illustration.

To demonstrate the capabilities of the Polynomial Toolbox we implement the
polynomial solution of a mixed sensitivity H-infinity problem. Consider the single-
degree-of-freedom feedback loop of Fig. 30. P is the plant transfer matrix and C the
compensator transfer matrix.

Fig. 30. Single-degree-of-freedom feedback loop

The sensitivity matrix S and input sensitivity matrix U of the feedback system are
defined as

S I PC= + -( ) 1 ,   U C I PC= + -( ) 1

The mixed sensitivity problem is the problem of minimizing the infinity norm H •  of

H
W S V

W U V
=
L
NM

O
QP

1

2

with  suitably chosen weighting matrices W1  and W2 , and V a suitably chosen
shaping matrix.  In the SISO case the infinity norm is given by

H W j S j V j W j U j V j•
-•< <•

= +2
1

2
1

2sup | ( ) ( ) ( )| | ( ) ( ) ( )|
w

w w w w w we j

The problem may be reduced to a “standard” H-infinity problem by considering the
block diagram of Fig. 31, which includes the weighting and shaping filters.

The diagram of Fig. 31 defines a standard problem whose “generalized plant” has the
transfer matrix

Introduction
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Fig. 31. Mixed sensitivity configuration

G

W V W P

W

V P

=
- -

L

N
MMM

O

Q
PPP

1 1

20

The closed-loop transfer matrix from w to

z
z

z
=
L
NM

O
QP

1

2

is precisely the function H whose infinity-norm we wish to minimize.

There are many ways to solve this problem, but only the frequency domain solution
(Kwakernaak, 1996) allows the generalized plant to have a nonproper transfer matrix
G. To enhance robustness at high frequencies it usually is necessary to make the
weighting filter W2  nonproper, which in turn makes G nonproper.

For simplicity we develop the solution for the SISO case only. Suppose that

P
n

d
V

m

d
W

a

b
W

a

b
= = = =, , ,1

1

1
2

2

2

where the numerators and denominators are (scalar) polynomials. Note that P and V
have the same denominators d — this makes partial pole placement possible (Kwa-
kernaak, 1993).

We study in particular the following numerical example (Kwakernaak, 1963):

P s
s

V s
s s

s
W s W s c rs( ) , ( ) , ( ) , ( ) ( )= =

+ +
= = +

1 1 2
1 1

2

2

2 1 2

Numerical
example
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where we let c = r = 1. Note that W2  is nonproper and, hence, the generalized plant G
is nonproper. The various polynomials are defined by the following command lines:

% Define the data

n = 1; d = s^2; m = s^2+s*sqrt(2)+1;

c = 1; r = 1;  a1 = 1; b1 = 1; a2 = c*(1+r*s); b2 = 1;   

The frequency domain solution of the H •  problem of Kwakernaak (1996) is based on
polynomial matrix manipulations. It requires G to be represented in left coprime
polynomial matrix fraction form. The desired left coprime factorization is

G

a m

b d

a n

b d
a

b
m

d

m

d

b a

b

d

a

m n

D D N N

=

- -

L

N

MMMMMM

O

Q

PPPPPP
=
L

N
MMM

O

Q
PPP -

L

N
MMM

O

Q
PPP

-
1

1

1

1

2

2

1 1

2

1

20

0

0 0

0 0

0 0

0

1 2 1 2

1 244 344 1 24 34

The partitioning is needed for the solution of the H •  problem. The following code
lines define the various polynomial matrices:

% Define the various polynomial matrices

D1 = [b1 0; 0 b2; 0 0];

D2 = [a1  ; 0   ; d  ];

N1 = [ 0;  0; -m ];

N2 = [ 0; a2; -n ];   

These code lines are actually taken from the macro mixeds, which automates the
entire computation.

As usual in the solution of the H •  problem we consider the problem of finding a
compensator that stabilizes the system and makes the infinity norm of the closed-
loop transfer matrix less than or equal to a given number g . Define the rational
matrix

Pg
g

-
*

*
* * -=

L
NMM

O
QPP

-1 2

2
1 1 2 1 1

1
2 2

1N

D
D D N N N D( )

Left coprime
polynomial
matrix fraction
representation

Frequency
domain solution
of the H-infinity
problem
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The * denotes conjugation, that is, A s A sT* = -( ) ( ) . In the next subsection it is seen
how a spectral factorization

Pg g g
- *=1 M J M

of Pg
-1  may be obtained. The spectral factor M g  is a square rational matrix such that

both M g  and M g
-1 have all their poles in the open left-half plane. The matrix J is a

signature matrix of the form

J
I

I
=

-
L
NM

O
QP

0

0

where the two unit matrices do not necessarily have the same dimensions.

Given this spectral factorization, all compensators whose norm is less than the
number g  are of the form K X Y= -1 , where

X Y I U M= g

U is a rational stable matrix such that U • £ 1 . In particular one may chose U = 0 .

We consider the spectral factorization

Pg g g
- *=1 M J M

It requires the following steps.

1. Do the polynomial spectral cofactorization

D D N N Q J Qo1 1 2 1 1
11* * -- =

g
g g

2. Perform the “left-to-right” conversion

Q N Dg g g
- -=1

2 2
1D L

3. Do the polynomial factorization

D D G Gg g g g
* *=J Jo

Then the desired spectral factor is

Spectral
factorization
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M g g g= -G D 1

The first spectral factorization may actually be done analytically, because we have

D D N N D N

I

I D N

b

b

m

b

b

m

1 1 2 1 1 1 1
2
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1

2
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2

1
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g

Inspection shows that if each of the polynomials b1 , b2  and m  is strictly Hurwitz then
the desired spectral factorization may be rendered in slightly modified form as

D D N N Q J Q Q

b

b

m

J1 1 2 1 1
1

1

2
2

1
0 0

0 0

0 0

1 0 0

0 1 0

0 0

* * - *- = =
L

N
MMM

O

Q
PPP

=
-

L

N
MMM

O

Q
PPPg g

g g, ,

The computation of the left-to-right conversion

Q N D- -=1
2 2

1DL

may easily be coded.

% Left-to-right conversion

Q = diag([b1 b2 m]);

[Del,Lam] = lmf2rmf([N2 D2],Q)   

The result is

Del =

    -0.71                  0.71 + s

     0.71 + 1.7s + s^2     0.71 + 0.71s

    -0.71                 -0.71 + s

Lam =

The first
polynomial
spectral
factorization

Left-to-right
conversion
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     0.71 + s     0.71

    -0.71         0.71 + s   

The second spectral factorization now takes the form

D D G G* *=J Jg g g

It is not difficult to write the necessary code lines

% Define gamma

gamma = 4;   

% Spectral factorization

Jgamma = eye(3); Jgamma(3,3)= -gamma^2;

DelDel = Del'*Jgamma*Del;   

[Gam,J] = spf(DelDel)   

Gam =

    -1.3e+002 - 50s - s^2        -2.2e+002 - 0.046s

     1.3e+002 + 48s + 0.17s^2     2.2e+002 - 3.8s

J =

     1     0

     0    -1   

To determine the numerator Y and denominator X of the compensator we need to
compute

X Y I U M I U= = -
g gG D 1

where for simplicity we choose U = 0 . It is advantageous to implement this
computation as a right-to-left conversion

I U z x yG Dg
- -=1 1

so that the compensator transfer function is

Second
polynomial
factorization

Computation of
the
compensator
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K X Y x y
y

x
= = =- -1 1

Again this may be coded straightforwardly:

% Computation of the compensator

xy = rmf2lmf([1 0]*Gam,Lam);

x = xy(1,1), y = xy(1,2)   

The output is

x =

     2.4e+002 + 1.6e+002s + 50s^2 + s^3

y =

     63 + 1.8e+002s - 0.66s^2   

The closed-loop characteristic polynomial is

f = +dx ny

We use it to test closed-loop stability and to compute the closed-loop poles.

% Computation of the closed-loop characteristic polynomial

% and closed-loop poles

phi = d*x+n*y;

clpoles = roots(phi)   

clpoles =

 -46.7980

  -0.9727 + 0.6271i

  -0.9727 - 0.6271i

  -0.7071 + 0.7071i

  -0.7071 - 0.7071i   

Computation of
the closed-loop
poles
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It is easy to collect the command lines listed so far in an m-script and to run the
script repeatedly for different values of g .

We first run the script with gamma = 4.  The closed-loop poles all have negative real
parts, and, hence, the closed-loop system is stable.

Next, we run the macro with gamma = 3.5.  The script returns

clpoles =

   4.9995

  -0.9590 + 0.5600i

  -0.9590 - 0.5600i

  -0.7071 + 0.7071i

  -0.7071 - 0.7071i

The closed-loop system is unstable. Hence, gamma has been chosen too small.

Note that four of the five closed-loop poles do not change much with gamma. The fifth
pole is very sensitive to changes in gamma.

We test this dependence by running the script several times for different values of
gamma without showing the output. Table 5 shows the results. Apparently as gamma
decreases the fifth pole crosses over from the left- to the right-half complex plane, but
does so through infinity.

For the final run we take gamma = 3.9515, close to the optimal value but such that the
closed-loop system is stable.  The corresponding numerator polynomial y and the
denominator polynomial x of the compensator are

y =

     4e+003 + 1.1e+004s - 0.66s^2

x =

     1.5e+004 + 1e+004s + 3e+003s^2 + s^3

Approaching
the optimal
solution
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Table 5. Dependence of the fifth pole on gamma

gamma the fifth pole

4 –46.798

3.5 4.9995

3.75 11.369

3.875 30.297

3.9375 173.86

3.9688 –127.80

3.95 315.38

3.951 3153.8

3.9515 –2987.6

Inspection of the numerator and denominator polynomials y and x of the compensator
obtained for gamma = 3.9515 shows that their coefficients are large, except for the
leading coefficients.

In fact, we may cancel the leading coefficients and simplify y and x. This amounts to
cancelling the compensator pole-zero pair and eliminating the corresponding closed-
loop pole that pass through infinity as gamma passes through the optimal value.

Recalculation of the closed-loop poles after this cancellation confirms that the large
closed-loop pole has disappeared. These calculations are performed by typing a few
simple command lines

y{2} = 0; x{3} = 0;

y = y/x{2}, x = x/x{2}

y =

     1.3 + 3.8s

x =

      5.1 + 3.4s + s^2

Calculation of
the optimal
compensator
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phi = d*x+n*y;

clpoles = roots(phi)   

clpoles =

  -0.9703 + 0.6201i

  -0.9703 - 0.6201i

  -0.7075 + 0.7072i

  -0.7075 - 0.7072i   

To assess the design we calculate and plot the sensitivity function S and the
complementary sensitivity function T of the closed-loop system. They are given by

S
dx

T
ny

= =
f f

,

We type in the command lines

omega = logspace(-2,2); j = sqrt(-1);

S = bode(pol2mat(d*x),pol2mat(phi),omega);

T = bode(pol2mat(n*y),pol2mat(phi),omega);

figure(1);

loglog(omega,abs(S),'k'); hold on

loglog(omega,abs(T),'b'); grid on

text(.1,.01,'S'), text(10,.01,'T')

Fig. 32 shows the plots of S and T. For a discussion of the design and the mixed
sensitivity design methodology see Kwakernaak (1993).

As we have seen, the spectral factorization behaves poorly as the optimal solution is
approached. The reason is that the factorization becomes “noncanonical” (Kwaker-
naak, 1996). This difficulty may be remedied by using an alternative form for the
second polynomial spectral factorization. Instead of factoring

D D G G* *=J Jg g g

Assessment of
the design

Alternative
spectral
factorization
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Fig. 32. Magnitude plots of the sensitivity functions

we rearrange the factorization as

D D G G* * -=J Lg g g
1

L is diagonal in the form

L L L= -diag( , )1 2

where L1 and L2  are diagonal nonnegative-definite but not unit matrices. If the
factorization is close to noncanonical then L is close to nonsingular. The large
numbers disappear.

The alternative factorization is obtained by an option in the spf command. The
computation of the compensator is not affected, so we only need to change the code
line that contains the spf command to

[Gam,J] = spf(DelDel,'nnc');

Rerunning the script with this modification for gamma = 3.9515 shows that the large
numbers have disappeared. We also see that instead of the large closed-loop poles
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and corresponding large pole and zero of the compensator we now have a closed-loop
pole, compensator pole and zero at –1:

y,x   

y =

     1.3 + 5.1s + 3.8s^2

x =

     5.1 + 8.4s + 4.4s^2 + s^3   

rootsx = roots(x), rootsy = roots(y), clpoles   

rootsx =

  -1.6787 + 1.5027i

  -1.6787 - 1.5027i

  -1.0000

rootsy =

   -1.0000

   -0.3476

clpoles =

  -0.7071 + 0.7071i

  -0.7071 - 0.7071i

  -1.0002

  -0.9715 + 0.6197i

  -0.9715 - 0.6197i   

Cancellation of the common root of y and x leads to the same optimal compensator
that was previously obtained:

x/(s-rootsx(3)), y/(s-rootsy(1))   

ans =
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     5.1 + 3.4s + s^2

ans =

     1.3 + 3.8s   

Now that the numerical instability in the computation of the compensator has been
removed it is simple to automate the search process. We implement a binary search
that involves the following steps:

1. Specify a minimal value gmin and a maximal value gmax for gamma.

2. Test if a stabilizing compensator is found at gamma = gmax. If not then stop.

3. Test if a stabilizing compensator is found at gamma = gmin. If yes then stop.

4. Let gamma = (gmin+gmax)/2. If a stabilizing compensator is found then let gmax =
gamma, otherwise let gmin = gamma.

5. If gmax-gmin is greater than a prespecified accuracy then return to 4.

6. Retain the solution for gamma = gmax and stop.

This search algorithm has been implemented in the macro mixeds. Calling the
routine in the form

gmin = 3.5; gmax = 4; accuracy = 1e-4;

[y,x,gopt] = mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy,'show')   

executes the search while showing the intermediate results. The search stops if
gmax-gmin is less than the input parameter accuracy. This is the output:

gamma  test result

-----  -----------

4  stable

3.5  unstable

3.75  unstable

3.875  unstable

3.9375 unstable

Automating the
search
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3.96875stable

3.95313stable

3.94531unstable

3.94922unstable

3.95117stable

3.9502 unstable

3.95068unstable

3.95093stable

3.95081stable

3.95074stable

Cancel root at -0.999999

y =

     1.3 + 3.8s

x =

     5.1 + 3.4s + s^2

gopt =

    3.9507   

The numerator x and the denominator y of the optimal compensator turn out to have
a common root. This often happens. The precise location of this spurious pole-zero
pair is unpredictable. It needs to be cancelled in the compensator transfer function
C y x= / .

Rather than relying on one of the polynomial division routines we write a few
dedicated code lines. Suppose that the numerator y has a root z. Then by polynomial
division we have for the denominator x

x s q s s z r( ) ( )( )= - +

Cancelling
coinciding pole-
zero pairs
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where the remainder r is a constant. By substituting s = z we see that actually r =
x(z). Expanding the polynomials x and q as

x s x s x s x q s q s q s qn
n

n
n

n
n

n
n( ) , ( )= + + + = + + +-

-
-

-
-

-
1

1
0 1

1
2

2
0L L

it follows that the quotient q and the remainder r may recursively be computed as

q x

q x q z k n n

r x q z

n n

k k k

-

-

=
= + = -
= +

1

1

0 0

1 1, , , ,L

Note that this way of computing r = x(z) is nothing else than Horner's algorithm. If
the remainder r is small then we cancel the factor s–z. By the same algorithm the
factor s–z may be cancelled from the numerator y.

These are the necessary code lines. A tolerance tolcncl is used to test if the
remainder is small.

% Cancel any common roots of xopt and yopt

rootsy = roots(yopt);

xo = xopt{:}; degxo = deg(xopt);

yo = yopt{:}; degyo = deg(yopt);

for i = 1:length(rootsy)

   z = rootsy(i);

   % Divide xo(s) by s-z

   q = zeros(1,degxo);

   q(degxo) = xo(degxo+1);

   for j = degxo-1:-1:1

      q(j) = xo(j+1)+z*q(j+1);

   end

   % If the remainder is small then cancel

   % the factor s-z both in xo and in yo
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   if abs(xo(1)+z*q(1)) < tolcncl*norm(xo,1)

      xo = q; degxo = degxo-1;

      p = zeros(1,degyo);

      p(degyo) = yo(degyo+1);

      for j = degyo-1:-1:1

         p(j) = yo(j+1)+z*p(j+1);

      end

      yo = p; degyo = degyo-1;

      if show

        disp(sprintf('\nCancel root at %g\n',z));

      end

   end

end

The full command

[y,x,gopt] = ...

    mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy,tol,'show')

includes a four-dimensional optional tolerance parameter

tol = [tolcncl tolstable tolspf tollr]

which allows to fine tune the macro. For a description of the various tolerances
consult the manual page for mixeds.

Applications in behavioral system theory

Behavioral system theory (Polderman and Willems, 1998) is a very general approach
to system theory. It defines a system as a relation between the signals that constitute
the  environment of the system. A distinction is made between latent (or internal) and
manifest (or external) signals but not necessarily between input and output signals.

The function
mixeds

Introduction
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Polynomial matrices play an important role in the behavioral theory of linear
systems. The purpose of this demo is to show that the Polynomial Toolbox provides
many useful routines for dealing with problems and questions in behavioral linear
system theory.

Fig. 33. RCL network

By way of illustration we consider the simple electrical network of Fig. 33. The
signals of interest are the currents iR , iL  and iC  through the resistor, inductor and
capacitor, respectively, the voltages vR , vL  and vC  across these same network
elements, the current i  that flows into the network, and the voltage v  across the
network. The relations between the signals are given by

• the element equations

resistor: v R iR R=

inductor: v L
di

dt
L =

capacitor: i C
dv

dt
C

C=

• the interconnection equations (Kirchhoff's laws)

i i i i i iR R L L C= = =, ,

v v v vR L C= + +

All these equations can be combined in the form

Q
d

dt
z( ) = 0 (5)

Example
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where the polynomial matrix Q and the vector-valued signal z  are given by

Q s

R

sL

sC

z

i

i

i

v

v

v

i

v

R

L

C
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L
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( ) ,=
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PPPPPPPPP
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MMMMMMMMMMM
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0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 0

1 1 0 0 0 0 0 0

0 1 1 0 0 0 0 0

1 0 0 0 0 0 1 0

0 0 0 1 1 1 0 1

The representation (5) is called a kernel representation of the system, because it
defines the system as all signals that are in the kernel (or null space) of the operator
Q d dt( / ) .

The equation (5) characterizes what is known as the full behavior of the system,
because it includes all latent and manifest signals.  Such a characterization is
typically obtained when setting up the system equations from first principles. For the
electrical network the latent variables l  and the manifest variables w could be
chosen as

l =

L

N

MMMMMMMM

O

Q

PPPPPPPP

=
L
NM
O
QP

i

i

i

v

v

v

w
i

v

R

L

C

R

L

C

,

If the latent variables are eliminated from the behavior then the manifest behavior is
obtained.

We consider how to compute the manifest behavior from the full behavior.
Partitioning the matrix Q as Q Q Q= 1 2  we have for the full behavior

Q s Q s w1 2 0( ) ( )l + =

where s represents the differentiation operator. Let the rows of the polynomial matrix
N  be a minimal polynomial basis for the left null space of Q1 . Then the manifest
behavior has the kernel representation

Kernel
representation

Full and
manifest
behavior

Computation of
the manifest
behavior
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R
d

dt
w( ) = 0

where

R s N s Q s( ) ( ) ( )= 2

In the example, choose the numerical values

R L C= = =3 1
1

2
, ,

We input the polynomial matrix Q as

R = 3; L = 1; C = 1/2;

Q = [ R   0   0  -1   0   0   0   0

      0  s*L  0   0  -1   0   0   0

      0   0   1   0   0 -s*C  0   0

      1  -1   0   0   0   0   0   0

      0   1  -1   0   0   0   0   0

     -1   0   0   0   0   0   1   0

      0   0   0  -1  -1  -1   0   1];   

The polynomial matrices Q1  and Q2  follow as

Q1 = Q(:,1:6); Q2 = Q(:,7:8);   

From this, the matrices N  and R  may be computed as

N = null(Q1')'; R = N*Q2  

R =

     2 + 3s + s^2    -s

Hence, the manifest behavior is described by the differential equation

( ) ( ) ( )2 3 0
2

2
+ + - =

d

dt

d

dt
i t

d

dt
v t

Example
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A behavioral system in kernel representation R d dt w( / ) = 0  is controllable iff the
polynomial matrix R is left prime (Polderman and Willems, 1998). For the example
we can easily verify  controllability by typing

isprime(R)   

ans =

     1   

A well-known fact from behavioral theory is that given a controllable kernel
representation

R
d

dt
w( ) = 0

there always exists an equivalent image representation of the form

w M
d

dt
= ( )l

with l  a latent variable. Inspection shows that the columns of M s( )  need to be a
minimal basis for the right null space of R s( ) . Thus, for the example we may compute
M as

M = null(R)   

M =

     s

     2 + 3s + s^2

Hence, the image representation of the system is

i
d

dt

v
d

dt

d

dt

=

= + +

l

l( )2 3
2

2

Note that physically the latent variable l  corresponds to CvC , which happens to be
the charge of the capacitor.

Controllability

Image
representation
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Another fact from behavioral system theory is that the manifest behavior of any
finite-dimensional linear system may be represented in the equivalent state space
form

&x Ax B w

Cx D w

= +
= +0

The latent variable x is the state of the system. This representation is by no means
unique, and may be constructed in the following way from the kernel representation
R d dt w( / ) = 0 .

First, assume that R is row-reduced. If it is not then it may be unimodularly
transformed to be row-reduced without changing the behavior.

Let S be a square, nonsingular, row-reduced matrix whose row degrees equal the row
degrees of R, and chosen such that S R-1  is left coprime. Obviously the behavior
R d dt w( / ) = 0  is equivalent to the behavior defined by

S
d

dt
z R

d

dt
w z( ) ( ) ,= = 0

Let

&x Ax B w

z Cx D w

= +
= +

be a minimal realization of the left coprime matrix fraction S R-1 . Then clearly

&x Ax B w

Cx D w

= +
= +0

is a state realization of the behavior.

We further pursue the example. Given the row-reduced polynomial matrix

R   

R =

     2 + 3s + s^2    -s   

we choose

S = s^2;   

State
representation

Example
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A minimal realization of S R-1  is obtained as

[A,B,C,D] = lmf2ss(R,S)   

A =

     0     1

     0     0

B =

    3.0000   -1.0000

    2.0000         0

C =

     1     0

D =

     1     0   

So far no distinction has been made among the manifest variable between “input”
and “output” variables, which the obvious connotation of  “causes” for inputs and
“effects” for outputs. Indeed, in the electrical network example there is no a priori
reason which of the two manifest variables v and i is the input and which is the
output because the circuit could be connected to a voltage or a to a current source.

If no compelling reason exists to designate certain manifest variables as inputs and
other variables as outputs then possible partitionings of the manifest variables into
sets of input variables and output variables may be determined on the basis of the
(plausible) requirement that the outputs are causally affected by the inputs.

To make this more concrete, suppose that we have a kernel representation
R d dt w( / ) = 0  such that R has full row rank with rank equal to r.  Select r
components of w as outputs and permute the components of w and the corresponding
columns of R such that the selected outputs are the first r components of w. We write
the resulting kernel representation as

R R
y

u
1 2 0-

L
NM

O
QP =

Construction of
IO system
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with y the output and u the input. Then the proposed selection of outputs and inputs
is deemed acceptable if R R1

1
2

-  is proper.

Consider the state representation

&x Ax B w

Cx D w

= +
= +0

where C and D have r rows. Then in this context a causal IO representation may be
constructed by selecting r columns of D so that the resulting square submatrix is
nonsingular. By designating the corresponding entries of w as outputs and the
remaining entries as inputs the equation 0 = +Cx Dw  may be rearranged as
y cx du= + . Substitution of y into the equation &x Ax Bw= +  results in a state
representation of the IO system.

We found that the electrical network has the state representation

&x x
i

v

x
i

v

A B

C D

=
L
NM

O
QP +

-L
NM

O
QP
L
NM
O
QP

= +
L
NM
O
QP

0 1

0 0

3 1

2 0

0 1 0 1 0

123 124 34

123 123

Inspection of the matrix D shows that the only available option is to take the current
i as the output and, hence, the voltage as the input. Substitution of the resulting
output

i x= -1 0

into the first equation yields the corresponding state differential equation. Not
wanting to make any mistakes we invoke MATLAB:

c = [-1 0]; B1 = B(:,1); B2 = B(:,2);

a = A+B1*c, b = B2   

a =

   -3.0000    1.0000

   -2.0000         0

Example
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b =

   -1.0000

         0

Thus, we have the IO representation

&x

a

x

b

v

i

c

x

=
-
-
L
NM

O
QP +

-L
NM

O
QP

= -

3 1

2 0

1

0

1 0

124 34

124 34

:

This selection of input and output corresponds to connecting the network to a voltage
source. Connecting it to a current source does not lead to a causal IO system because
the admittance

2 3 2+ +s s

s

of the network is nonproper.
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Introduction

In this chapter we review the properties and structure of polynomial matrix objects
as defined and used in the Polynomial Toolbox.

Global properties and initialization

The global polynomial properties store important general information that is
implicitly used by many operations and functions when they are called during a
Polynomial Toolbox session.

• When a polynomial matrix is created but no symbol is explicitly specified to
denote its variable the current value of a global property called variable symbol is
used.

• If all computations are to be performed up to a certain relative tolerance then it is
sufficient to set properly the global property named zeroing tolerance.

• The format used for displaying polynomial matrices is stored in another global
property called display format.

• Finally, a global property flag called verbose level controls the amount of
information that is displayed during the computation.

The system of global properties is quite flexible. The Polynomial Toolbox is equipped
with several special macros that modify the global property values and allow to
customize the session environment. On the other hand, many functions allow a
temporary local change of a property just by inserting its value among the input
arguments.

All four global properties are listed in Table 6 along with their admissible values. The
global properties are created and assigned at the beginning of every Polynomial
Toolbox session by the initialization macro pinit. Unless explicitly specified the
properties are set to the default values of  Table 7.

Global
polynomial
properties
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The global property values can be modified anytime during the session in several
ways: by a general macro gprop, by specialized macros such as pformat, symbol,
tolerance, and verbose, or simply by re-using pinit.

Table 6. Global properties and their admissible values

property name function admissible values

variable symbol implicitly used variable symbol  s, p, z , q, z–1, d
zeroing tolerance global tolerance used for zeroing any real number
display format how to display polynomial matrices symb, symbs, symbr,

coef, rcoef, block
verbose level the amount of messages displayed no, yes

Table 7. Default property values

property name default value
variable symbol  s
zeroing tolerance 10–8

display format coef
verbose level no

Every Polynomial Toolbox session starts with the initialization command  pinit:

pinit  

Polynomial Toolbox initialized. To get started, type one of

these: helpwin or poldesk. For product information, visit

www.polyx.com or www.polyx.cz.

This function creates the global polynomial properties and assigns their default
values. Any other settings may be assigned directly by including the desired values in
arbitrary order such as 

pinit z 1.0e-6 symb;

which is the same as
pinit z, symb 1.0e-6;

If you forget to initialize the Polynomial Toolbox and open with another Polynomial
Toolbox command then an error message is returned:

Initialization
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pol(1)

??? Error using ==> pol/pol

Use PINIT to initialize Polynomial Toolbox.

The current values of the global properties may be displayed by macro gprop.
Typing

gprop   

returns the following table

Global polynomial properties:

PROPERTY NAME:      CURRENT VALUE:    AVAILABLE VALUES:

variable symbol     s                's','p','z^-1','d','z','q'

zeroing tolerance   1e-008            any real number

verbose level       no               'no', 'yes'

display format      symbs            'symb', 'symbs', 'symbr'

                                        'coef', 'rcoef', 'block'    

The table summarizes both the current and the admissible values of all global
properties. The same macro may also alter one or more global property values.
Typing

gprop z^-1

switches the global variable symbol to z -1  leaving all other properties unchanged.
Similarly,

gprop 0

sets  the global zeroing tolerance equal to 0, that is, deactivates the process of zeroing
completely.

Alternatively, the global property values may be changed by re-using pinit.
However, the effects of gprop and pinit differ slightly: gprop leaves all
unspecified properties unchanged while pinit sets them to their default value.

Displaying and
altering global
property values
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Users are strongly recommended to handle the global properties only by the
Polynomial Toolbox functions (pformat, symbol, tolerance, verbose, or pinit
and gprop). Only experienced programmers should employ the following details.

The global properties are stored in a global structure called PGLOBAL. The structure
is invisible in the MATLAB workspace or elsewhere unless it is declared as global.
After such a declaration the self-explanatory fields of the structure may be viewed .
For instance,

global PGLOBAL

PGLOBAL

PGLOBAL =

     ZEROING: 1.0000e-008

     VERBOSE: 'no'

     FORMAT: 'coef'

     VARIABLE: 's'

One should be careful when modifying the global structure directly. The global
properties are not tested for correctness. Mistakenly introduced incorrect values may
therefore cause unexpected behavior.  Whenever such a strange behavior is observed
or suspected type pinit to restore the standard conditions.

Polynomial Matrices

The Polynomial Toolbox offers extensive tools to manipulate and analyze polynomials
and polynomial matrices. Polynomials are scalar functions or algebraic entities
described as

a s a a s a s a sd
d( ) = + + + +0 1 2

2 L

The integer d is the degree, the real (or complex) numbers a0 , a1 , L, ad  are the
coefficients and the operator s is called the variable or indeterminate. For instance,

a s s s s( ) = + +2 32 3

Introduction
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is a polynomial of degree 3 with coefficients 0, 1, 2, and 3, respectively, in the variable
s.

Polynomial matrices are matrices whose entries are polynomials, such as

P s
a s a s

a s a s
( )

( ) ( )

( ) ( )
=
L
NM

O
QP

11 12

21 22

Alternatively, polynomial matrices may be thought of as matrix polynomials

P s P P s P sd
d( ) = + + +0 1 L

where d is the polynomial matrix degree, while the real (or complex) constant
matrices P0 , P1, L, Pd   are the matrix coefficients.  For instance, the polynomial
matrix

P s

s s

s s s

s s s

( ) =
+ +
- -

+ + +

L

N

MMM

O

Q

PPP

1 2 3

2 3

1 1 5 8

2

2

4 2

may also be written as

P s s s s( ) =
L

N
MMM

O

Q
PPP
+ -
L

N
MMM

O

Q
PPP

+ -
L

N
MMM

O

Q
PPP

+
L

N
MMM

O

Q
PPP

1 2 3

0 0 3

1 1 8

1 0 0

1 2 0

1 0 0

0 0 1

0 0 1

0 5 0

0 0 0

0 0 0

1 0 0

2 4

For convenience, the Polynomial Toolbox provides a customized data structure for
polynomial matrices called a polynomial matrix object or simply POL object. This
object encapsulates the polynomial matrix data and makes it possible to manipulate
polynomial matrices as single entities rather than collections of data vectors or
matrices. For instance

  a = pol([0 1 2 3],3);

creates a polynomial matrix (POL) object a that stores the scalar polynomial

a s s s s( ) = + +2 32 3

This polynomial may now be manipulated by referring to the single MATLAB variable
a. Its roots may for instance be calculated by typing

Polynomial
matrix objects
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  roots(a)

The polynomial matrix object implementation relies on the object-oriented
programming capabilities of MATLAB  version 5 and later. Polynomial matrix objects
are MATLAB structures with an additional flag indicating their class (POL). Like
MATLAB structures, they have pre-defined fields called object properties. For
polynomial matrix objects these properties include degree, size, coefficients, variable
symbol and user data. The functions operating on a particular object are called the
object methods. These may include customized versions of simple operations such as
addition or multiplication. For instance,

  b = 1+a

performs the polynomial matrix addition

b s a s s s s( ) ( )= + = + + +1 1 2 32 3

The object-specific versions of such standard operations are referred to as overloaded
operations. For more details on objects, methods, and object-oriented programming
refer to Chapter 14 of Using MATLAB.

The functions pol and lop create polynomial matrices. These functions take the
coefficients and degree as input and produce a polynomial matrix object (POL) that
stores this data in a single MATLAB variable. In what follows we show how to
construct polynomial matrix objects.

The primary polynomial matrix object constructor is the function pol. If the
coefficients of a scalar polynomial

a s a a s a s a sd
d( ) = + + + +0 1 2

2 L

are arranged into a constant row vector A = a a ad0 1 L , with the coefficients
ordered according to ascending powers of s, then the command

  a = pol(A,d)

creates the scalar polynomial  a s( ) . The variable a is a polynomial matrix object
containing all the necessary information. For instance,

  a = pol([1 2 3],2)

creates the polynomial

Creating
polynomial
matrix objects

Common
construction
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a s s s( ) = + +1 2 3 2

Polynomial matrices are created similarly. If the matrix coefficients of  a polynomial
matrix

P s P P s P s P sd
d( ) = + + + +0 1 2

2 L

are arranged in a constant block row matrix  A =  P P Pd0 1 L  with the
coefficients matrices ordered according to ascending powers of s, then the command

  P = pol(A,d)

creates the polynomial matrix  P s( ) . The variable P is now a polynomial matrix
object containing all the necessary information. For instance,

  P = pol([[1 0; 0 1] [0 1; 1 0]],1)

creates the 2 2¥  polynomial matrix

P s s
s

s
( ) =

L
NM

O
QP +

L
NM

O
QP =

L
NM

O
QP

1 0

0 1

0 1

1 0

1

1

The notation used above for polynomial matrices is common, yet, especially in pure
mathematics, indexing the coefficients by descending powers is sometimes preferred.
In this case the standard notation is

P s P s P s P s Pd d
d d( ) = + + + +-
-0 1

1
1

1L

To accommodate this convention the Polynomial Toolbox offers an alternative
polynomial matrix constructor called1 lop. It works just as pol but expects the
coefficients in reversed order. Thus, the scalar polynomial a s( )  considered previously
may be also be constructed by the command

  a = lop([3 2 1],2)

The polynomial matrix P s( )  we created before may similarly be obtained as

  P = lop([[0 1; 1 0] [1 0; 0 1]],1)

                                                          
1 Note the reversed order of the characters letters of the command.

Alternative
construction
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The Polynomial Toolbox provides several functions that create special simple
polynomials. The commands s, p, z, q, zi, d and  v create single term
polynomials (monomials) consisting only of the first power of  s, p, z, q, z -1 , d  and of
the current value of the variable symbol, respectively.  These commands can be used
directly to create other scalar polynomials by arithmetic operations such as

  a = 1+s+s^2+s^4  

or

  b = 1+z*(2-z)

Polynomial matrices can easily be built by concatenating monomials, for instance

  P = [zi zi^2; 1 zi^5]

Several monomials can be assembled simultaneously by the function mono that works
with an integer vector input argument, for instance,

mono([1 2 4 5])

ans =

     s     s^2     s^4     s^5

It also works with an integer matrix argument such as

mono(ones(3))

ans =

     s     s     s

     s     s     s

     s     s     s   

More sophisticated polynomials may easily be produced by combining mono with
other functions such as in

sum(mono(1:10))

ans =

     s + s^2 + s^3 + s^4 + s^5 + s^6 + s^7 + s^8 + s^9 + s^10   

Building
polynomials by
special
functions
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No MATLAB function can work in a workspace in which a MATLAB variable of the
same name exists. In particular, each of  the monomial functions listed before is
unusable as soon as a MATLAB variable of the same name is created. To re-activate
the function, the user must clear the variable. For instance, the monomial function

s

ans =

     s   

does not work if you created a variable with the same name, such as

s = [0 0]; s

s =

     0     0   

To make the function active again, just clear the troublesome variable

clear s

s

ans =

      s   

This behavior is rather standard in MATLAB . Compare the performance of the built-
in functions i, j, pi, eps and alike.

Despite its unique internal representation a polynomial matrix can be displayed in
various ways. By default, the polynomial matrix

P s
s s

s
( )

.

.
= +L
NMM

O
QPP

1 0 5

1 0 33333

2

which is generated by the command

  P = [1+0.5*s s^2; 1 0.33333*s];   

is displayed in symbolic short format symbs as

P  

Important note

Displaying
polynomial
matrix objects
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P =

     1 + 0.5s     s^2

     1            0.33s   

The display format uses short (1 or 2 digit) coefficients and is easily readable. There
are two more symbolic formats available:  symbolic long  (symb) with longer decimal
coefficients

pformat symb, P    

P =

     1 + 0.5s     s^2

     1            0.33333s

and  symbolic rational (symbr) with rational coefficients

pformat symbr, P

P =

     1 + 1/2*s     s^2

     1             33333/100000*s   

The symbolic formats look natural and are easily readable for small matrices of low
degrees. For large polynomial  matrices or matrices of high degree these formats are
slow and result in messy output. If the matrix is large, has high degree, or if we need
to see its coefficients in full detail, then one of the numeric formats may be used. The
most important is the coef format:

pformat coef, P

Polynomial matrix in s: 2-by-2,  degree: 2

P =

Matrix coefficient at s^0 :

     1     0

     1     0
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Matrix coefficient at s^1 :

     0.5000         0

     0    0.3333

Matrix coefficient at s^2 :

     0     1

     0     0   

Also available is the reversed order coefficient format rcoef

pformat rcoef, P

Polynomial matrix in s: 2-by-2,  degree: 2

P =

Matrix coefficient at s^2 :

     0     1

     0     0

Matrix coefficient at s^1 :

    0.5000         0

         0    0.3333

Matrix coefficient at s^0 :

     1     0

     1     0  

For completeness, the matrix coefficients may also be arranged in a block row
constant matrix by the block format

pformat block, P

Polynomial matrix in s: 2-by-2,  degree: 2

P =
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    1.0000         0    0.5000         0         0    1.0000

    1.0000         0         0    0.3333         0         0   

that was used in Polynomial Toolbox version 1.6. In all the numeric formats the
scalar coefficient format may be set by MATLAB command format.

The way a polynomial matrix is displayed is controlled by global property display
format. To switch among the various formats one can use one of the general
commands pinit and gprop  or even better the special function pformat that has
been used previously. So either of the commands

pinit coef

gprop coef

pformat coef  

assigns the display format to be coef causing all subsequent polynomial matrices to
be displayed by their coefficients. Note that gprop and pformat work exactly as
described while pinit also re-initializes the toolbox so that all other global
properties are restored to their default values. Therefore, the use of pformat is
recommended here.

Besides the symbolic and numeric display formats a polynomial matrix can also be
shown in the form of 2-D and 3-D color plots. Look how a polynomial matrix

M = [ s  s^3    s^4    s^5

     1+s s^2-1 3*s^3   s^4

     1   2+s   2*s^2  s+s^3

     0    2     3*s   s^2+s ];

appears in the 2-D plot of Fig. 34, which is created by the command

  pplot(M)

Note that different degrees are expressed by different colors. A 3-D color plot such as
in Fig. 35 can be obtained by a similar macro called pplot3. It works as follows

  pplot3(M)   

The lego-like plot may be rotated with the help of the mouse.

Changing
display formats

Plotting
polynomial
matrices
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Fig. 34. Two-dimensional plot of a polynomial matrix

Fig. 35. Three-dimensional plot of a polynomial matrix

Polynomial matrix properties

The preceding section shows how to create POL objects that encapsulate polynomial
matrices. Optionally, POL objects may store additional information called user data.
This section gives a complete overview of the POL properties, that is, various pieces
of information that characterize polynomial matrices or may be attached to them.
Type help pprop for online help on the available POL properties.
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From the point of view of implementation the POL properties are the various fields in
the POL internal data structure. These fields have names. To define a polynomial
object values need to be assigned to each of these fields2.

A polynomial matrix is defined by its degree, size and coefficients. In a polynomial
object P the degree is stored in the field P.deg. Another field denoted P.size
contains the size of the polynomial matrix. It is a two-element row vector with
nonnegative integral entries.  It can be assigned any nonnegative integer value or  -
Inf for a zero polynomial matrix. The matrix coefficients of P are stored in a further
field called P.coef that is a 3-D array, composed of the constant matrix coefficients
as horizontal layers (ordered from bottom to top). As these three basic properties
must be consistent they can only be joined when the polynomial matrix is created by
a constructor. In addition they can only be changed jointly as a result of some
operation or function.

Every polynomial matrix has a symbol to denote its variable. This symbol is stored in
a separate field of the POL object called P.variable. Its value is not crucial for
most operations but it makes a difference when the matrix is displayed and also in
certain special functions.

The Polynomial Toolbox offers six different strings3 that can be used as a symbol
denoting the polynomial matrix variable: s, (default) p, z, q, z -1   and d. One of them
is included in every polynomial matrix object. The symbol is used whenever the object
is displayed and also for certain special macros that need to distinguish between
continuous-time and discrete-time operations or functions. In particular,

• s and p are used for differential operators in continuous-time systems

• z and q  play the role of forward-shift discrete-time operators,

• and finally, z -1  and d stand for delay (backward-shift) discrete-time operators.

When creating a polynomial matrix object with the function pol the variable string is
set equal to the current value of the global variable symbol, which is s by default.  To

                                                          
2 A comparison with the Control System Toolbox 2.0 is now in order. Users familiar with the CST
may find our system very similar. In fact, it is simpler: Instead of the Property/Value pairs
encountered in CST we use just one argument called Value or sometimes PropertyValue. As the
number of POL properties is small each property can uniquely be identified by its value.
3 This was inspired by the CST with a minor difference: The symbol d  was added and the meaning
of q was changed to be equivalent to z (rather than z

-1).

Degree, size
and coefficients

Variable symbol
property
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select another string one can toggle the global variable before by typing the pol
command or use the pprop function afterwards.

In addition to the obligatory properties described above another property called user
data has been included for convenience. It is stored in the field P.user and may
take any value acceptable by MATLAB.

The polynomial matrix properties are summarized in Table 8.

Table 8. Polynomial matrix properties

Property name Field in the POL object Admissible values

degree P.deg nonnegative integer or
–Inf

size P.size two-entry nonnegative
integer vector

coefficients P.coef 3-D double array
variable symbol P.variable 's', 'p', 'z', 'q',

'z^-1', 'd'
user data P.user any

The Polynomial Toolbox operations and functions allow mixing polynomial objects
and standard MATLAB matrices (2-D “double” arrays). Whenever necessary, the
standard MATLAB matrix is automatically converted to a special POL object called
constant polynomial matrix that naturally possesses a zero degree. For instance, the
user can add the constant 1 to a polynomial a s( )  simply by typing

  1+a

The sum is obtained by Polynomial Toolbox overloaded function plus that begins
with the conversion of the standard MATLAB double variable 1 to a constant
polynomial object pol(1) and proceeds by adding the two polynomial objects

  pol(1)+a

in an obvious manner.

For practical reasons, a constant polynomial matrix is assigned an empty string
variable symbol whenever it is directly created from a MATLAB “double” array:

c = pol(1)

User data
property

Constant
polynomial
matrices
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Constant polynomial matrix: 1-by-1

c =

     1

c.variable

ans =

     ''

If the constant results from an operation on polynomials, however, then it inherits
the variable symbol of its “parents,” for instance,

c=(1+s)-s

Constant polynomial matrix: 1-by-1

c =

     1

c.variable

ans =

     ''

A zero polynomial matrix is a particular case of a constant matrix that is
characterized by zero coefficients. Its degree is always  –Inf  and its variable symbol
is always an empty string:

Z=pol(zeros(2))

Zero polynomial matrix: 2-by-2,  degree: -Inf

Z =

     0     0

     0     0

pprop(Z)

ZERO POLYNOMIAL MATRIX

Zero polynomial
matrices
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size        2-by-2

degree     -Inf

PROPERTY NAME:    CURRENT VALUE:     AVAILABLE VALUES:

variable symbol                     's','p','z^-1','d','z','q'

user data         []                 arbitrary   

Similarly to empty MATLAB matrices, an empty polynomial matrix object is of size
0 0¥ , 0 ¥ m  or n ¥ 0 . It possesses an empty coefficient array, empty degree and empty
variable symbol string. It may be constructed from an empty 2-D “double” array, such
as

CE = ones(3,0)

CE =

   Empty matrix: 3-by-0

PE = pol(CE)

PE =

Empty polynomial matrix: 3-by-0

pprop(PE)

EMPTY POLYNOMIAL MATRIX

size        3-by-0

PROPERTY NAME:    CURRENT VALUE:     AVAILABLE VALUES:

variable symbol                     's','p','z^-1','d','z','q'

user data         []                 arbitrary   

When a polynomial matrix arises from a standard operation or function its size,
degree and coefficients are completely defined by the operation or function. Its
variable symbol is set according to the symbols of the input matrices. If — usually by

Empty
polynomial
matrices

Properties of
computed
matrices
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mistake — two input matrices have different variable symbols then the resulting
symbol is set equal to the current value of the global variable symbol property.

Adding, multiplying, concatenating, etc., a constant never changes the variable
symbol property.

User data, in contrast to all other properties, are not transferred through operations
and functions. This property may only be assigned directly. It is empty for any
polynomial matrix that results from an operation or function.

The three basic polynomial matrix properties – degree, size and coefficients – are
automatically fixed at the moment the matrix is created. They can only be changed
by various operations or functions on the matrix that are described later.

Adding the desired symbol string as an input argument of the constructor function
sets the variable symbol property. Thus,

  a = pol([1 1],1,'s')

creates a polynomial matrix in s while

  b = pol([1 1],1,'z')

forms a  polynomial matrix in z. Once the desired symbol is explicitly specified the
global symbol value becomes irrelevant.

Similarly,

  a = pol([1 1],1,'s','January 25')

sets the user data of  a(s)  to 'January 25'.

The symbol and user data properties may also be assigned or changed by means of
the macro pprop: the command

  a = pprop(a,'d','12345')

changes the variable symbol of  a to d  and the user data to '12345'.

The current and admissible values of the polynomial properties are displayed by
prop:

  pprop(a)

Setting POL
properties

Displaying POL
properties
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One way to query polynomial matrix properties is by structure-like referencing. Thus,
typing P.size, P.deg, P.coef, P.variable and P.user returns the size,
degree, coefficients, variable and user data of a polynomial matrix P, respectively.
Unlike for MATLAB structures you need not type the entire field name or be concerned
with upper-case letters. Thus P.size, P.Size, P.s and P.S all return the same.

The variable symbol and user data may also be assigned in this manner. Thus, you
can type

  P.variable = 'z';

  P.user = 'blabla';

and so on. For safety reasons, however, P.size, P.deg and P.coef are not
allowed on the left-hand side of an '=' symbol.

An alternative way to access certain polynomial matrix property values is to use
special functions

  deg

  size

  lcoef

and so on. These functions usually offer more information. For instance, the
commands

  deg(p,'row'), deg(p,'col'), deg(p,'ent') and deg(p,'diag')

return the row degrees, column degrees, entry degrees and diagonal degrees,
respectively.

The entries, rows, columns and sub-blocks of a polynomial matrix may be indexed as
is usual in MATLAB. Thus, for the matrix

A = [1 s s^2; 2 2*s 2*s^2; 3 3*s 3*s^2]

A =

     1     s      s^2

     2     2s     2s^2

     3     3s     3s^2   

Accessing
property values

Indexing
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the expressions

 A(3,3)

ans =

     3s^2

A(1,:)

ans =

     1     s     s^2   

A(:,3)

ans =

     s^2

     2s^2

     3s^2

A(1:2,1:2)

ans =

     1     s

     2     2s

represent the bottom right entry, the first row, the first column and the

upper left 2 2¥  sub-block of A. Similarly,

A(1,1) = 2+s+s^2

A =

     2 + s + s^2     s      s^2

     2               2s     2s^2

     3               3s     3s^2

assigns the (1,1) entry,
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A(:,3) = []

A =

     2 + s + s^2     s

     2               2s

     3               3s

deletes the last column, etc4.

Similarly, curly braces are employed to index polynomial matrix coefficients. Thus,

A{0}

ans =

     2     0

     2     0

     3     0

is the constant (zero power) coefficient matrix of A. The two kinds of indexing may be
combined:

A{0}(1,1)

ans =

     2

is the scalar constant coefficient of the (1,1) element.

The degree of  a polynomial matrix such as

A = [1 s s^2; s^3 s 1; 0 1 0]

A =

     1       s     s^2

                                                          
4 Owing to a bug in Matlab 5.2 the Matlab function end fails to work when it is used to index a
polynomial matrix.

Various degrees
and leading
coefficients
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     s^3     s     1

     0       1     0    

may be identified in various ways:

deg(A)

ans =

     3

size(A,3)

ans =

     3

A.deg

ans =

     3

Besides this standard degree also the row degrees, column degrees and entry degrees
may be obtained as

rowdeg = deg(A,'row')

rowdeg =

     2

     3

     0

coldeg = deg(A,'col')

coldeg =

     3     1     2

entdeg = deg(A,'ent')

entdeg =
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     0     1     2

     3     1     0

  -Inf     0  -Inf

The leading coefficient matrices corresponding to these degrees are successively

Matrix_leading_coef_matrix = lcoef(A)

Matrix_leading_coef_matrix =

     0     0     0

     1     0     0

     0     0     0

Row_leading_coef_matrix = lcoef(A,'row')

Row_leading_coef_matrix =

     0     0     1

     1     0     0

     0     1     0

Column_leading_coef_matrix = lcoef(A,'col')

Column_leading_coef_matrix =

     0     1     1

     1     1     0

     0     0     0

Entry_leading_coef_matrix = lcoef(A)

Entry_leading_coef_matrix =

     0     0     0

     1     0     0

     0     0     0
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The Polynomial Toolbox supports polynomial matrices with complex coefficients such
as

C = [1+s 1;2 s]+i* [ s 1;1 s]

C =

     1+0i + (1+1i)s     1+1i

     2+1i               (1+1i)s

Many Toolbox operations and functions handle them accordingly. In addition, there
are several special functions for complex coefficient polynomial matrices such as

real(C)

ans =

     1 + s     1

     2         s

imag(C)

ans =

     s     1

     1     s

C'

ans =

     1+0i - (1-1i)s     2-1i

     1-1i              -(1-1i)s

conj(C)

  ans =

     1+0i + (1-1i)s     1-1i

     2-1i               (1-1i)s

Complex
coefficients
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Operations on polynomial matrices

All the basic arithmetic operations, such as addition, subtraction, multiplication,
division without remainder (factor extraction), taking integer powers, may be
performed on polynomial matrices by standard MATLAB operators because all these
operations have been overloaded for POL objects. In fact, everything works just as for
standard MATLAB matrices. For instance, consider two square polynomial matrices

A = [1 s; 1+s 1-s], B = [s^2 1; 2 1-s^2]

A =

     1         s

     1 + s     1 - s

B =

     s^2     1

     2       1 - s^2

The matrices are added by typing

C = A+B

C =

     1 + s^2     1 + s

     3 + s       2 - s - s^2

Subtracting B from C recovers the original matrix A

C-B

ans =

     1         s

     1 + s     1 - s   

A and B are multiplied by typing

Basic
operations
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D = A*B

D =

     2s + s^2               1 + s - s^3

     2 - 2s + s^2 + s^3     2 - s^2 + s^3

Now

D/B

ans =

     1         s

     1 + s     1 - s

which clearly equals A, while similarly A\D returns B:

A\D

ans =

     s^2     1

     2       1 - s^2   

Note, however, that

D/A

Constant polynomial matrix: 2-by-2

ans =

     NaN     NaN

     NaN     NaN

as D is not divisible5 from the right by A.

                                                          
5 As polynomial matrix multiplication is not commutative the matrix D = A*B is, without a
remainder, divisible by A from the left but not from the right. That is, there exists no polynomial
matrix F such that D = F*A. For right division with remainder see the manual page of the
function pdiv.
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Finally, taking powers

A^2

ans =

     1 + s + s^2     2s - s^2

     2 + s - s^2     1 - s + 2s^2   

works as expected.

Theoretically, the degree of a polynomial

a s a a s a s a sd
d( ) = + + + +0 1 2

2 L

is d whenever ad π 0 . In numerical computations, however, one often encounters the
case of ad  very small (much smaller than the other coefficients) yet non-zero. By
way of example, consider two simple polynomials

f s s s

g s s s

( ) ( )

( )

= + + +

= + +

2 1

1

2

2

e

where e  is almost (but not quite) zero. When computing the difference

f s g s s( ) ( )- = +1 e

a question on its degree may arise6. It is necessary to compare e  with the norms of
the coefficients in f and g to decide whether or not the corresponding term should be
deleted. This process is called zeroing. The performance of many algorithms for
polynomial problems depends critically on the way zeroing is done, in particular
when elementary operations are used.

When using the Polynomial Toolbox zeroing is automatically performed with a
relative tolerance controlled by the global property called zeroing tolerance. To de-

                                                          
6 The phenomenon of subtracting two similar numbers is known and called cancellation by
numerical mathematicians (see for instance Higham, 1996). Cancellation usually does not bring
inaccuracy by itself. The problem is that it amplifies the effect of inaccuracy introduced
previously. If the number ε in  f2 is correct (coming from  real data or otherwise) then the whole
computation is accurate and the resulting difference  f – g  is really of degree 1. If, on the other
hand,  ε is incorrect (arising from inaccurate computing done before) then the correct degree of  f –
g  is of course 0.   

Zeroing
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activate zeroing you must set the global property equal to zero. For instance, by
default the following summation works correctly

A  = [ 1+0.7*s 0.2*s -0.9*s ];

r = sum(A)

Constant polynomial matrix: 1-by-1

r =

     1                                

If, however, zeroing is switched off by the command

  gprop 0

then an incorrect result is returned7

r = sum(A)

r =

     1 - 1.1e-016s   

In terms of value the inaccuracy seems to be small and not substantial as the
coefficient r1  is very small. In terms of degree, however, the inaccuracy becomes
critical. As r1  is the leading coefficient the resulting degree appears to be 1 while it
should be 0. Whenever the computation to follow depends on the degree of r1  such a
small inaccuracy may become crucial and could lead to a complete failure of the
calculation process.

Reliable algorithms for polynomial matrices are resistant to such episodes. For other
routines, the zeroing facility is ready to help. For reasonable data encountered in real
life, the built-in zeroing with the default tolerance works quite well. For some special
critical examples one must manually decrease the value of the global zeroing
tolerance or employ a smaller local tolerance whenever necessary.

                                                          
7 The inaccuracy is caused here by the finite precision of the internal binary representation of the
coefficients 0.7, 0.2 and –0.9. This becomes evident when typing  sum([0.7 0.2 –0.9]) ,
which returns  ans = -1.1102e-016 .
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The current version of the Polynomial Toolbox only supports operations between
polynomial matrices in the same variable symbol such as C s A s B s( ) ( ) ( )= + .
Operations with different polynomial variable symbols always result in a polynomial
matrix having its variable equal to the current value of the global polynomial
variable symbol. If for instance the current global variable symbol equals its default
value s then upon typing

p+z   

MATLAB returns

Warning: Inconsistent variables

> In c:\Matlab\toolbox\polbox2\@pol\plus.m at line

Conflict of
variable
symbols
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